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ABSTRACT

Analysis of digital remote sensing images can, and should,
employ all the information that is available about the area
of interest. Maps often do exist, s.o that the question arises
how map information can be automatically used do direct image
analysis. With an appropriate organisation of digital map data
banks it becomes possible to merge image and map. So far we
have concentrated on areal features. We describe in the report
the algorithms, data structures used for the task and we report
on our experiences using specific examples of Landsat images in
Southern Germany and Austria to automatically recognize features
for subsequent rectification.

RESUME

L'analyse des images num~riques de t6lbd6tection doit
utiliser toute l'information qui existe d'une region. Les
cartes g6ographiques normalement existent; il se pose la
question comment utiliser ces cartes, d'une mani~re automatique,
pour diriger l'analyse d'uneimage. Une banque de donn~es numri-
ques doit etre arrang~e d'une mani~re specifique pour relier
image et carte. Jusqu'& pr6sent tous nos efforts se concen-
traient aux objets ar6aux. Dans le rapport nous decrivons algo-
rithmes, la structure des donn~es, et nous discutons les ex-
p6riences obtenues en reconnaissant automatiquement des objets
dans desscenes Landsat, situ6e au sud de l'Allemagne et en
Autriche, et son application au redressement des images.

ZUSAMMENFASSONG

Die Auswertung digitaler Fernerkundungsbilder soll auf
der gesamten Information beruhen, welche Uber das Interessensge-
biet zur VerfUgung steht. Meist bestehen Karten, sodaS sich die
Frage erhebt, wie die Kartendaten fUr eine Steuerung der Bild-
analyse in automatischer Weise verwendet werden konnen. Mit ei-
ner geeigneten Organisationsform fUr die digitalisierten Karten-
inhalte in einer Kartendatenbank wird es m6glich, Karte und Bild
zu verschmelzen. Bisher haben wir uns auf fldchenhafte Merkmale
in Bild und Karte konzentriert, um entsprechend Bild und Karten-
merkmale automatisch aufzufinden. Wir beschreiben in der vorlie-
genden Arbeit unsere Methoden, Datenstrukturen und Erfahrungen
mit Beispielen von Landsat-Aufnahmen in SUd-Deutschland und Oster-
reich in der automatischen Erkennung von Merkmalen zur nachfol-
genden Entzerrung.



1. INTRODUCTION

The analysis of remote sensing imagery should rely on
available data from the investigated area.Generally this will
be so called ground truth in the form of observations made in
the field or of imagery of higher diagnostic power, e.g. of a
larger scale. In many instances, however, remote sensing ima-
gery is being analyzed of areas where excellent maps already
exist. A number of investigators have thus come up with proce-
dures to merge digital imagery with the existing digitized map
so that the interpreter/user can take full advantage of both
data sources. So far, these procedures were essentially manual,
with the purpose of merely presenting a combined data set
(BRYANT and ZOBRIST, 1977).

The question arises naturally, how a procedure must oper-
ate that merges digital images and maps automatically and how
the data present in the map can help to automatically analyze
a digital image.

We have taken it upon us to study these questions. Obvious-
ly they address a very complex area that falls into the catego-
ry of automatic photo-interpretation. We are well aware of the
fairly pessimistic opinions sometimes expressed on the prospects
of automation of photo-interpretation. Nonetheless do we believe
that it makes sense to support human analysis of digital ima-
ges by automation and to incorporate an available map into this
process. There are certain monitoring tasks such as for example
in the detection of changes that could be nearly fully automa-
ted in this way; for other remote sensing applications this
may not be the case; the benefits of automation for those appli-
cations may consist of greater efficiency of the interaction
between man and machine.

Map-guidance in the image analysis is central in our effort.
The term map-guided automatic photo-interpreation has previous-
ly been used by BARROW et al. (1977). Essentially we see in our
work three areas of emphasis:

- the organisation of the digital map data;
- the analysis of areal features;
- the analysis of linear features.

The tools required encompass a range of manipulating digital
graphics data, of image processing and of automatic pattern re-
cognition. Our general approach to automatically merge image and
map was described in a previous paper (KROPATSCH and LEBERL,
1978 a). We will review this concept in the next section. This
will be followed by a description of the manipulation of map
data (chapters 3 and 4), of a discussion of image pre-processing
(chapter 5), and the establishment of relationships between maps
and image (chapter 6).

In our study we employ the techniques of automated feature
recognition to the geometric image rectification. A description
of these fairly common procedures follows. Finally, we go into
our results as obtained with Landsat digital satellite images.
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Previous work in this area has been performed by STIES
et al. (1977); they described a comprehensive image inter-
pretation system that includes a map data bank suitable for
map-guided image analysis. BARROW et al. (1977) and TENENBAUM
et al. (1978) have mainly concentrated on the analysis of
linear features in digital images. With satellite images at
small scales, however, it is promising to study mainly areal
features. After all, satellite remote sensing draws its essen-
tial motivation from the analysis of natural surface features:
it is for this reason that scales can remain comparatively
small, while the study of manmade linear objects would require
larger scales and thus airborne remote sensing.

However, some results have been obtained also with linear
features from satellite scanner data.

It should be emphasized, that the techniques may have a
broad spectrum of uses, not only for rectification but also
for other tasks. As an example one may point to the work of
FLONZAT et al. (1979) who based multi-spectral classification
on training areas which are taken from a map and transformed
into the image.

If we go back somewhat we find that an early automatic
image recognition application was the measurement of pricked
points (KREILING, 1976) and of reseau points (ROOS, 1975).

The associative, complex mental interpretation of an ima-
ge by the human expert will hardly ever be matched by the
computer. However, specific tasks may be ideally suited for
automation. In the current context we are certainly not tack-
ling the most trivial application but one which in its com-
plexity helps one to understand the complexity of the problem
in general. We may take the statement of a prominent pattern
recognizer for whatever it is worth, but ALEKSANDER (1978)
claimedthat "most problems of automated pattern recognition
have solutions; difficulties only exist in the speed and ge-
neral applicability of these solutions". Our current study is
aimed at the understanding of solutions to the automated re-
cognition of map features in images. Our first application is
to use these features as control points for.a geometric recti-
fication.
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2. GENERAL CONCEPT OF ARSIM

The task of ARSIM (ARSIM is an acronym for Automatic
Registration of Satellite Images and Maps)consits of re-
gistering a given satellite image with the corresponding
map. Because of local distortions of the image the re-
gistration cannot be done with a simple global transforma-
tion defined a priori. A common way to register images
with each other is the use of control points. This method
is also suitable for the present task. It has first to
produce enough control points so that one can rectify the
image geometrically. Figure 2.1 presents a general program-
f low and shows that

(1) program ARSIM

(2) begin

(3) REGISTER (map, image, control points);

(4) if sufficient control points then

(5) RECTIFY (image, control points, new image)

(6) else

(7) print ('map and image cannot be registered');

(8) end,

Figure 2.1: Main program for project ARSIM.

the problem splits into two mainly independent procedures
REGISTER, which registers map and image delivering control
points, and RECTIFY, which rectifies the geometry of the
image with the aid of the control points to result in a new
image. The new image has then the geometry of the map. The
method of operation is described in detail in chapter 7.

Before the processing of the lower level procedures is
described in more detail an overview of the registration
process is discussed by means of a flow-diagram (figure 2.2).

In this flowchart processing steps (1) to (9) correspond
to the procedure REGISTER, while step (10) correspond to
procedure RECTIFY. The following chapters 3 through 7 describe
the functions of the lower level procedures in detail mostly
using a general purpose Problem Description Language (PDL).

2.1 THE REGISTRATION PROCESS.

Following NACK (1975) we define in the digital image a
square (rectangular) Area of Interest (AI) that is being
processed at any given time.
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Read in the digital
(1) image and corresponding

digital map datafile

(2) garry out general purposeimage pre-processing
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image

(6) Select n-th feature from MW

(7) Search corresponding feature in
imagecompute measure of similarity

(8) Verifictino Vye s erification
necessary

no-a---yes Satisfactory? o

Search for singular points
(9) Definition of homologue

points

Sufficient features? no

yes

yes New area
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Figure 2.2: Flow-diagram of the operation of ARSIM.
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For processing-time considerations the digital image to
be registered with the map devides into a number of AIs. These
are easier to handle than the total image. They restrict the
search and speed up the procedure. Thiu logical processing
unit subdivides further the operations of procedure REGISTER
into

(A) operations with AIs (steps (3) until (6) in figure 2.2),

and

(B) operations within AIs (steps (7) until (9) in fig. 2.2).

Operations (A) form procedure REGISTER (figure 2.3), the
operations from (B) are collected in a subroutine called
OVERLAY and described in chapter 2.2.

(1) procedure REGISTER (map, image, controlpoints);
(2) begin
(3) controlpoints:= .empty;
(4) repeat
(5) begin
(6) SELEC (AI); $ input an Area of Interest $;
(7) TRANSFORMWINDOW (Al, MW),
(8) MAPLOAD (map, MW) ;
(9) PREPROCESS (image, AI);

(10) OVERLAY (image, AI, map, MW, controlpoints Al);
(11) controlpoints: = controlpoints+controlpoints Al
(12) end until no input left;
(13) end.

Figure 2.3: Operations with Areas of Interest (AI).

In step 6 (figure 2.3) we start from a digital map base that
is available in a format compatible with the image processing
system DIBAG, which contains the satellite image to be re-
gistered. SELECT (Al) reads an AI, which can be chosen manu-
ally by the following criteria:

- it has a predefined window width,
- in that window there is a certain amount of patterns,
which can be optically distinguished in the image,

- for most of these patters in the image exist corres-
ponding objects in the map.

Each pixel of a digital satellite image can be located in a
map projection with a certain positional accuracy. For LANDSAT,
maximum errors have been demonstrated to amount to not more
than 5 km (COLVOCORESSES et al., 1973). Data used to achieve
this accuracy are the satellite position and attitude values
delivered with each image. More recently, orbit parameters in
LANDSAT permit an even better accuracy to be achieved without
ground control data, namely about 10 pixel diameters or 800 m.
Using the map locations of the corner points of AI we define
the corresponding map window (mW)(procedure TRANSFORMWINDOW
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in step (7) of figure 2.3). In order to contain all of AI,
the window has to be larger than Al due to the limited po-
sitional accuracy (compare figure 2.4).

Then MAPLOAD loads a portion of the map data bank which
comprises only objects completely in MW (step 8 of figure 2.3).
The structure of the data bank is described in chapter 3.

Depending upon the types of objects contained in that
portion of the map we are now able to call routine PREPROCESS
(step 9 of figure 2.3) for the Al in the image. For each ob-
ject-type there exists a special method of pre-processing of
the image data (for more detail see chapter 5),so that when
we search for some object we do it on an image that is pre-
processed for this object-type.

2.2 REGISTRATION IN AN AREA OF INTEREST.

After all the preparations and restrictions we are now
able to turn to the main task: identification of objects
from the map in the image. This is done in procedure OVERLAY
and consists of 5 major operations as shown in figure 2.5:

- the selection of an object from MW (OBJECTSELECTION);
- the extraction of the object from the data bank and

its transformation in a format which allows a compari-
son with the image (MAPTRANSFORM);

- the recognition of the object in the image (RECOGNIZE);
- the VERIFICATION that the pattern found in the image
corresponds to the original object and

- the search for controlpoints (CONTROLP).

(1) procedure OVERLAY (image, AI, map, MW, controlpoints);
(2) begin
(3) controlpoints: = empty;
(4) OBJECTSELECTION (map, MW, list);
(5) while list not empty do
(6) begin
(7) object: = first (list);
(8) list: = list - first (list);
(9) MAPTRANSFORM (map, object, binarymatrix);

(10) RECOGNIZE (image, Al, binarymatrix, pattern);
(11) if VERIFICATION (object, image, pattern)>accepttresh then
(12) CONTROLP (object, pattern, controlpoints)
(13) end;
(14) end.

Figure 2.5: Overlay of image AI and MW.

Features within MW are sorted according to their probabi-
lity of being identifiable in the satellite image. This probabi-
lity can be (automatically) adjusted as the result of previous
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experiences. Consequently, the procedure has a learning ca-
pability. The procedure OBJECTSELECTION (figure 2.6) provi-
des a sorted list of these features. The most probable fea-
ture within MW is selected and a search begins in the image-AI
to find the corresponding detail. MAPTRANSFORM (see figure
4.2) extracts a boundary polygon of this "object" from the
map data bank, it linearly transforms the polygon into the
image coordinates, using the same function as in TRANSFORM-
WINDOW and builds a binary matrix which determines if a pixel
of the AI is either inside the polygon or outside. The bina,
matrix of the object serves as input to procedure RECOGNIZE
(figure 2.7). It breaks down the recognition process into
4 different methods, which are described in chapter 6. The
result of the search is another binary matrix called "pat-
tern".

(1) procedure OBJECTSELECTION (map, MW, list);

(2) begin
(3) list: = empty;
(4) for all objecti g MW do
(5) begin
(6) recogn: = probability (object);
(7) if recogn> recogthresh then list:= list +(object,recogn);
(8) end;
(9) SORT (list) ;

(10) end.

Figure 2.6: Selection and Sort of objects in MW.

Next the identity of the map and image feature has to be
verified by a comparison of the "object" and the "pattern"
(VERIFICATION).A verification measure is compared to a certain
"accepttresh" to include the worst case: a reject.

A last step (12 in figure 2.5) is the search for singul-
arities of the feature so that unique homologue pairs of co-
ordinates can be identified in both the image and the map
(CONTROLP). As this is an essential concept for the rectifi-
cation process, chapter 7 contains a description of it.

(1) procedure RECOGNIZE (image, Al, binarymatrix, pattern)
(2) begin
(3) case search method (object) of
(4) begin
(5) 1: SHIFT (image , binarymatrix, pattern)
(6) 2: TFF.Ml (image, binarymatrix, pattern)
(7) 3: ADAPT (image, binarymatrix, pattern, D)
(8) 4: LINDET (image, binarymatrix, start (object),

goal (object), pattern);
(9) end

(10) end.

Figure 2.7: Recognizing an object by different methods.
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3. OPERATIONS WITH MAP DATA

3.1 GENERAL

Processing of digital map data is basically different
from that of images; we are not dealing here with raster
type data, but with vectors. The area of work is often times
denoted by the expression "computer graphics" and is seen
to be the fastest growing portion of the computer industry.

In the current context we are dealing with computer
graphics in a specific way: we are processing vectQr data
and raster information and need conversion of one into the
other. This is not a trivial task, even if it may seem so
at superficial inspection.

Graphical data banks consist of data and a computer
program system for manipulation of the data. A vast body of
literature exists in this area, also from the particular
point of view of cartography (e.g. FRANK, 1979-: WEBER, 1978).
Depending on specific requirements and uses data banks may
be simple or very complex. Data structures define complexity
and in turn result from the type of relationships that must
be defined among elements of the data bank.

Data structures can roughly be grouped into two groups:

(a) one without explicit definition of relationship among
data elements (e.g. object oriented sequential or
raster data structure);

(b) one with explicit definition of relationship (topology,
neighbourhood, positional reference).

Most of currently implemented cartographic data banks
belong to category (a) without a thorough definition of re-
lationship among data elements.

In our current application we face the task of defining
a map data bank of category (b). It must thus be possible
to establish very quickly interconnections, neighbourhoods,
relationship among objects of a map, much like the process
of a visual inspection of map contents by a human interpreter.
A topological data structure will thus be required. It is
straight-forward to define a set of functions to be satis-
fied by the data bank:

- selection and extraction of single elements (objects)
of the data bank, using names, properties, positions;

- establishment of connections between individual ob-
jects in geometrical and thematic set operations;

- computations with elements;
- generation of lists and printouts;
- graphical output in vector or raster format.

This enumeration may not be complete but represents a set
of important features to be had by the data bank in its
application to work with maps and images.
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We will describe in this chapter the basic data struc-
tures, algorithms and uses of the data bank. Detail is
appropriate to instruct a prospective user of the data bank.
However, it needs to be stressed that the data bank is experi-
mental in nature, and the current implementation is motivated
solely be the need to experiment with combined sets of ima-
ge and map data. Numerous improvements will have to be made
in the areas of user friendly data acquisition and editing.

3.2 DATA STRUCTURES

3.2.1 General

We deal with data that are available in the form of
strings of x,y-coordinates representing lines with a speci-
ally identified beginning point. It is not relevant here
how these points were digitized - be it manual digitizing,
line following or raster scanning with subsequent vectorisa-
tion.

There exists a multitude of data structures for various
types of graphical data banks. Methods to store those features
of a map in digital form that are relecant in our current
problem could be:

(i) Each feature is represented by its contour polygon

(object-oriented, sequential data structure);

(iii) Each feature is defined by a sequence of line segments.
Each segment separates exactly 2 features and consists
itself of a polygonal sequence of points. The map re-
presents a "planar graph".

(iii) Raster presentation;

(iv) Geo-coded or positionally defined data, with the special
case of the quad treel) (WEBER, 1978; DYER et al., 1979);

(v) Description using the Freeman-Chain Code2) (FREEMAN,
1979).

Since we require a connection between map data and digital
images we need to stress that these images exist in the form
of matrices of gray values. This corresponds to the concept
of a raster structure for graphical data as used by WEBER
(1978), BRUGGEMANN (1978), HARRIS (1979), HARRIS and PRESTON
(1979), GOODCHILD (1979) and others. It would thus be logical
to consider structure (iii) for a data bank.

i) "Quad Tree" is the name of a tree structure of 4th order.
Its root is a square of the base plane containing the entire
feature. There exist four "sons" of a "node" by subdividing
the square in 4 equal segments. In each "leave" of the tree
(i.e. in a node without successor) one finds whether its
square belongs to the basic square in the base plane or not.

2) This is based on a raster representation. It describes the
contour of a feature or object using a sequence of small
vectors (standardized and coded) which connect adjacent
raster points.
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However, with the map features in a raster format one
encounters immediately problems due to storage, redundancy,
differences of raster mesh size and orientation and complexity
of required transformation routines.

If we evaluate the five classes of data structures we
find that an object-oriented, sequential method (i) does not
compare wellwith method (ii) because of redundancy: all lines
must be digitized and stored twice.

Reference to position in method (iv) appeals due to its
efficiency when addressing points or features in a two-
dimensional space. Judging method (v) shows that this is
suitable particularly in cases where data were digitized in
a raster format by a scanner. Current assumptions are, how-
ever, that data exist in the form of vectors. But method (v),
the Freeman-Chain Code, still has an advantage of reduced
storage requirements. This is set off by increased difficult-
ies for geometric transformations.

These various data structures are not mutually exclusive.
A feature-oriented, topologically meaningful structure acc.
to (ii) can exist along with a positional one such as (iv).
This then would permit one to get an answer to two questions
like:

- Where is a specific feature and what are its neighbours?
- What feature exists at a specific position?

3.2.2 A structure to merge map and image

Prior to a decision on the data structure one needs to
identify the principles of procedures to merge map and image.
We do see two main alternatives:

(a) A synthetic image is generated from the graphical data;
actual and synthetic images are then conventionally
cross-correlated.

(b) Map data is structured into elementary information,
namely features or objets. Of these one selects specific
ones for a meaningful connection with a given image.

The first route must fail first of all when maps contain
features that do not appear in an image: political boundaries,
for example, or in the reserve case, clouds; furtheron if
map features are generalized as with roads. We must realize
that maps have primarely been produced to portray the earth's
surface for interpretation by a human. We therefore turn our
attention preferably to the second method (b) above.

One not only has available for a merging process the
shape and position of an object, but also its topological
environment. A rock area, for example, is more difficult to
identify in an image if it is surrounded by glaciers as
compared to forests.

.
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This leads then to the use of a topological data structure
(WEBER, 1978) as the highest level of the data bank, accord-
ing to method (ii) in section 3.2.1. This structure will be
discussed in detail later. The highest level of the structure
presents the position of features with respect to one another.
There still remains the task to store thematic information
and to exactly position the feature (geometric information).
Since the topological relationships have been defined already
in the highest level one can make use of the simplest data
structure for the lower levels; this is the sequential one.
It is here that features are described geometrically and
thematically.

A data bank is thus organized in three levels of infor-
mation (Fig. 3.1):

- topological relationship (structure):

- sequential lists of objects, i.e. of features
(regions) and of lines (region list, line list);

- polygons stored as a sequential coordinate list
(coordinate file).

The next three sections will present the data bank,
followed by two data structures useful for the current
problem: the coordinate list of an objects contour, and the
binary matrix. The former serves as an intermediate storage
and for transformation of coordinate systems; the latter is
needed for geometric set operations.

This structure also permits search processes based on a
positional reference, however, in an inefficient manner. For
improved economy of this type of search processes one would
have to define the positional reference set over the topo-
logical level.

3.2.3 The topological structure, the graph.

In a formal manner one can interpret a map to be a

planar graphl):

G = (R,L)

R ... set of regions (features, nodes);
L ... set of lines (edges), separating 2 regions.

1) Definition: a (finite) graph G = (XU) is composed of a
pair, consisting of the finite set X, the "nodes", and a
set U c X x X, the "edges". A graph is "planar" if it is
possible to represent it in a plane in such a way that
all nodes are separable and that all edges are simple
curves, without intersections or double points, and that
two edges only meet at the end points (SAKAROVITCH, 1975).
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The graph should be stored digitally on a minimum of
storage since all inputs/outputs of data are based on this
structure. This can be achieved by a reduction and compress-
ion of the information kept in the smallest storage units,
so called items. Information is reduced to pointers describing
topological relationships. There are 3 types of items (REG,
LIN, LIST):

REG: = ( Q pointer RA to a region list; © pointer
PLIST to a LIST-item).

LIN: = ( ® code 2621431 ; ® pointer LA to the line
list, © pointer PRI; pointer PR2),

LIST: = ( Q pointer PL to a LIN-item; n pointer

PNEXT to the next LIST-item).

Pointers PR1 and PR2 point to two REG-items which
correspond to the regions separated by a line.

On a 36-bit-computer each REG-item exists of 1 computer
word (2 halfwords), each LIN-item of 2 words ( 4 halfwords)
and each LIST-item of 1 word (2 halfwords).

The mode of data acquisition and properties of features
lead to definition of two types of regions:

- areas and
- skeletons.

Skeletons are areas represented by lines such as rivers
or roads. Two reasons exist for this separate definition of
skeletons:

(a) they permit digitizing of such linearly extended areas
as if they were lines; there is no need to digitize all
contours of such an area - this would be a redundant
effort;

(b) the width of skeletons can be selected at a later stage -
a feature of importance when various scales are needed
in visualizing the map contents.

Skeletons differ from areas in the graph: the pointer
LA of a border line is replaced by a specific code (the num-
ber 262142 in our case). This can be done because in the case
of a skeleton there are no specifically digitized border lines.

1) Redundant code to fill up 2 computer words.
Denotes a LIN-item.
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However, the graph needs a LIN-item: this is then a pseudo-
line which was not digitized. A skeleton is thus an area
with pseudo-lines as contour. Beginning and end-points of
a skeleton are two specific LIST-items where PL-pointers
are replaced by a code for the beginning (the number 262140
in our case) and end (the number 26241). Figure 3.2 illustra-
tes a portion of a data base in the area of Graz, digitized
off maps at scale 1:50 000. Elements of this data base will
be used to illustrate the topological data structure.

3.2.4 Illustration of the graph using a skeleton.

Taking a specific skeleton from fig. 3.2 we describe
its pertinent structure in figures 3.3 (a)and 3.3(b).

Fig. 3.3(a) presents a skeleton extending between points
A and E, and with the name S7. As a region or area it is
delimited by a series of pseudo-lines P313, P354, P367,

P1079. A printout of the graph is shown in fig. 3.3(b),
with only the data rekeating to skeleton S7. Rows or lines
in the computer printout are shifted left-right depending
on whether it concerns a LIN-, LIST- or REG-item. Each line
of the printout contains a line number, increasing regularly
from 1 to n, and the content of a 36-bit-computer word with
two integers. Each LIN-item consists of 2 rows, each REG-
and LIST-item of one row.

To explain the printout in more detail., let us take
the first item belonging to skeleton S7. It is in rows 313
and 314 of the graph, with the following format:

Row number 313: [262143 LA]

Row number 314: LPR1 PR

This is a LIN-item as is obvious from code 262143. The value
of LA is 262142; we deal this with a pseudo line separating
two regions. The first region has its REG-item in row 309 as
decumented by the value 309 of pointer PRI, the second re-
gion in row 1070 (see pointer PR2). Figure 3.3(b) presents
all LIN-items relating to the second region with REG-item
in row 1070. Other rows of the printout were suppressed. REG-
item 1070 has an RA-pointer 7 and therefore represents ske-
leton S7 (compare the region file, section 3.2.6).

Then LIN-items in rows342, 348, 354 separate the region
in row 1070 from a region in row 328. In the region file
that region has the name EGGENBERG.

LIST-items serve to accelerate the search for those LIN-
items that belong to a given region. From row 1070 we find,
using pointer PLIST, that the first LIST-item of the region
EGGENBERG is in row 1071. Each LIST-item consists of:
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REG-Items ( RA PLIST )
LIST-Items ( PL ?NEXT )

LIN-tem ( - LA )
32x :97 331 ( PR! PR2 )

329 : 262143 262142
EGGENBERG 33 0 : 328 1181

3'= : 329 334
332 : 262143 2621142
333 : 328 328

3.'. : 3 37

335 : 262143 3t.
336 : 328 363

?37 : 335 33f
336 : 33? 341

339 : 2621A3 79
34CV : 328 1.

1 : 339 34
342 : 262143 262142
343 : 328 1C7C

:a4 : 342 347

34S : 262143 28
346 : 328 37C

347 : 34! 350
34P : 262143 262142
3a9 : 328 lC7C

3!0 3Ae 353
351 : 262143 32

352 : 328 365
363 : 351 35b

354 : 262143 262142
355 : 328 1C7C¢

3.6 : 350 359
357 : 262143 262142
35P : 328 1232

3!q : 357 362
36' : 262143 2621Sa

361 : 328 122?
.4 01.2 : 360 -

198 ~ 364
SCHLOSSEGGEN 364 : 3.3

11 1416' 1182

S00000000045 11P2 : ~ .214L 1185
1183 262143 .62142
1184 : 1181

11Pr  :11fl. 1168

1186 : 262143 P621t?
1187 : 1181

11 :1186 t189

119C, : 262143 262102
1191 : 1131 :

11q2 : 119C 1193

!1 3 : 32Q 0

Figure 3.4(b): Sections of the graph around region 197,
Eggenberg.



-25-

Row number: PL PNEXT.

Each pointer PL points to the next LIN-item or designates the
start or end of the contour of a region. PNEXT points to the
row with the next LIST-item.

3.2.5 Illustration ofthe graph using an area.

Figures 3.4(a), (b) show two areas, one enclosed by the
other. The pseudo-line has special significance in this case
that is typified by an island in a lake: non-connected parts
of the boundary-polygon (contour) exist in the form of the
edges of the lake and island. The pseudo-line connects both
and must be passed twice.

From this and the illustration of the skeleton in fig.3.3
it is now straight forward to follow the section of the graph
for the areas EGGENBERG and SCHLOSSEGGEN.

Row 328 contains the REG-item of region EGGENBERG with
pointer PLIST pointing to row 331 with the first LIST-item.
This in turn has pointer 329 to the (first) LIN-item in row
329. Among the LIST-items there are two rows with pointer PL
pointing to the same LIN-item in row 332: this designates a
pseudo-line (LA equals 262142) separating area 328 from 328
or more appropriately passing through to area 328.

Region EGGENBERG is delimited by region SCHLOSSEGGEN, by
skeleton S44 and by the undefined background (544 internally
has the name SoOOOOOO0045) . This is the reason why figure
3.4(b) also contains the graph sections for these regions.

3.2.6 Line- and region files

Line- and region files form the connection between the
graph and the lowest level consisting of the sequence of points
in the coordinate list. Line- and region files contain descrip-
tive, thematic and statistical information concerning a line
or region. An element of these files is composed as follows:

(a) Name ......... 12 characters. During data acquisition or
tagging each line and skeleton automatical-
ly are assigned names. For lines this is
LOOOOOOOOXXX , for skeletons
SOOOOOOOOXXX , where 'XXX' represents
successive running numbers. Names of
regions can be freely selected by the
user in the process of building up the graph.

(b) Windows ....... 4 values. The first two represent the small-
est x,y coordinates of a line or skeleton,
the last two the dimension in x- and y-direct-
ion of the data bank coordinate system.
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(c) Pointer .......... points to the respective item in the
graph.

(d) Coordinates ...... 2 values delimiting the range of rows
in the coordinate list for the polygon
of a line or skeleton.

(e) Starting point ... of a line or skeleton.

(f) End point ........ of a line or skeleton. These points per-
mit rapid compilation of an areas bounda-
ry or contour without directly address-
ing the coordinate list. Areas do not
have start- and end points, these exist
only for lines or skeletons. With areas
the values for start- and end points
are filled by zeroes.

(g) 15nore positions . for statistical measures, for example
the type of a region. In our specific
application we define:

O undefined
1 water (not skeleton!)
2 river, canal (only skeleton!)
3 built-up area
4 range land , agriculture
5 forest
6 rock
7 road (skeleton)
8 rail

Figure 3.5 presents an example of a printout of 3 parts of
a line- and region file.

3.2.7 Coordinate list

This file contains point coordinates forming polygonal
lines. Each point can be addressed by his position in the
sequential file. Figure 3.6 shows an example of a printout
of the coordinate list for lines LOOOOOOO0031, LOOOOOOOO032,
LOOOOO000033.

3.2.8 Coordinate list of the boundary of an area

We use an intermediary data structure before and after
geometrical transformation of polygons. Polygons here are
closed boundaries of areas. The structure is-sequential. Two
areas where one is totally enclosed by the other are represented
as follows:

(i) Each line segment is preceded by a pair of values marking
the start- and ending indices of the sequence of points of
the line segment.
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se KOOROINATEN VON 555 BIS 597 . ******.*.*
555 : 214.2430 , 2049.0370)
556 : I 213o9550 9 2049o3360)
557 : ( 213.6980 , 2049.54101
558 : I 213.9400 v 2049.8760)
559 : 4 214.2060 9 2C50. 11 80
560 : 214o5280 , 2050.2830)
561 : 214.8450 , 2050e24501
562 : t 214o9220 , 2050o20701
563 : 4 214o8920 , 2049.79301
564 : 1 214.8610 , 2C49.4960)
565 : 1 21 4.R430 , 2049s2110) LO0000000031
566 : 214.7840 , 2048.90f0)
567 : 4 214.7640 , 2C48.7200)
568 : t 214.7490 v 2048.4290)
569 : 4 214.7540 v 2048.16301
570 : 4 214.4560 r 2048e29901
571 : 4 213.8930 , 2048.5740)
572 : 214.2430 v 2049.0370)
573 : 4 209.7110 , 2047e1450
574 : 4 209.8830 , 2047.4860)
575 : ( 209.8620 , 2047.65101
576 : ( 209.7540 , 2047.8210)
577 : 209.7130 t 2048.0260)
578 : ( 209.5830 • 2048e2060)
579 : ( 209.4510 , 2C48.30901
580 : 4 209.2720 , 2048.1820)
581 : £ 209.2380 9 2048e0730)
582 : ( 209.1600 P 2047.9780 L0
583 : ( 209.2530 9 2047.9020)
584 : I 209.3580 , 2C48.0130)
585 : 4 209.4470 , 2048.0200)
586 : 209.5570 P 2047.7770)
587 : ( 209.6290 , 2047.57601
588 : 209.7090 , 2C47.4370)
589 : 4 216.7260 * 2049e9990)
590 : ( 216.704C 9 2C49*68301
591 : ( 216.6560 , 2049.4380I
592 : 4 216.5710 , 2049.2040)
593 : 4 216.6600 , 2048.9440) L00000000033
594 : ( 216.7330 v 2C487590)
595 : 4 216.8100 , 2048.6520)
596 : 4 216.9730 v 2048.4960
597 : 1 21791820 9 2048030401

Figure 3.6: Example of a printout for coordinate list of
map Graz (compare figure 3.5).
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* EGGE4gERG VON I 815 168 ***************

2 : 2 211,826Q* P 2'46e02703
3 : ( 211.P12.1 # 2'"462730)
4 : C 211.@q3r * 2046.5440)
" : ( 211.974' 9 2046.8900)
6 : 212.'100 9 2',47.27C0)
7 : ( 212.4590 # ?l47i.6830)
8 : C 212.583C v 2048oC430)
9 : C 212.6670 9 2(1484370)

10 : ( 212.7470 • 2148*8100
I : C 212e67311 . 2048.9980)
12 : ( 212.430 , 2049.0000)

140 : C 212.5110 2C45*5800)
141 : c 212.575C , 2045.6170)
142 : ( 212.58CC- v 245o6740)
143 : ( 212.4551) , 2045.7090)
144 : ( 212*305C 9 2045.7550)
1*5 : ( 212.2010 9 2045.8210)
146 : ( 212S,90C v 2045.9080)
147 : ( 211.9180 , 204509920)
118 : ( 2110260 9 2046*0270)

*- - 149 : ( 15090C'(- 167.C000)
It; : ( 214*2473" 2 349*0370)
151 : ( 213.9550 P 204903360)
I! 2 : ( 213.6980 • 2n*9.5410)
153 : ( 213.Q4('G v 2049.8760)
154 : ( 2142 06r; v 2C51.1180)
155 : ( 214*.528f 2r5Co2830)
156 : t 2149845Cr • 205C*2450)
1!7 : ( 214.922C r 215C,,2070)
1!8 : ( 214.892 , 2049.7930)
159 : ( 214.861' *' 2049.a960)
1 '. : ( 214 'i 4 C # 2r 49.2110)
11-l : ( 214*.78" * 2'4 8,9080)
IA? : ( 214.76 (, 9 2046.7200)
1,3 : ( 2149749(; • 248.4290)
1i4 : ( 214.7540 * 20C48.1630)
1#,.5 : C 214*456f, * 2r482990)
16~6 : ( 21.'&s93n * 2948*5743)
Ih7 : C214 o2 43 1 * 2-1a9o*373)

Figure 3.7: -Coordinate list of a polygon describing area
Eggenberg. (*) marks value pairs preceding a
section of a polygon.
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(ii) These line segments are written sequentially into the
coordinate list.

Figure 3.7 illustrates such a coordinate list with the pre-
ceding pairs of values here as indices 1 and 49.

3.2.9 Binary matrix (raster)

For logical operations with graphical data, such as
operations of intersection, union and taking the negative
the raster format is well suited. Therefore a provision
exists in the data b.ank to convert areas for which a bound-
ary polygon exists to a raster format. The appropriate data
structure is a binary matrix. Coordinates are defined by a
window preceding the matrix. The window definition is thesame as that in the line- and region file. It is followed
by a 2-dimensional matrix M:

M (ij) = 1 if (i,j) C area
M (i,J) = 0 elsewhere.

The elements of the matrix are ordered row by row in a
compact format: the last bit of one row is directly followed
by the first bit of the next row. This is currently implemented
to form arbitrary rectangular binary matrices with 72 000
elements.

Figure 3.8 shows region EGGENBERG as a binary matrix.

3.3 ALGORITHMS FOR DATA INPUT AND OUTPUT

The current implementation of computer programs is to
serve in the main task of merging map and image data. Limita -

tions of resources has therefore mainly affected the user er-
gonomy in data acquisition and editing. To further illustrate
the current implementation stage we outline the data input and
output. Actual applications software now exists for merging
maps and images. This is described in a separate chapter 4.

3.3.1 Data Acquisition

(a) Step 1: Digitizing of points, lines and skeletons.

We currently do off-line digitizationon a manual
digitizing table1 ) and then transfer the data to a disk.

1) This is possible due to the cooperation of the Agrar-
technische Abteilung of the Government of Styria.
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3007 . .............. o

001 1 O...XXXXXXXXXXXXI. .XXXXXX.......~ooeooo ........... 0000*
0012 .XXXXXXXXXXXXXXXXXXXXXXXXXXX..............................
001 3 *XXXXX."..XXXXXXXXXXXXXXX..............................00
V"014 * *...........XXXXXXxXXXXXXXX................. * .***0***

OCGI *o..o........XXXXXXXXXXXXX..........................o

0 01 C . sosoo o .. o . o o.o..XX XX XX XXX XX X...... a eo oo o* oo oo s o o& s

00271 ..... **.*

0022 e.o.........oooaXXXXYXXXXXXXX........eoe....o........

0023 *.....o....*...*.**ooXXXXXXXXXXXXX...o**..**.* .****.**

00235 .

0028

0030

0032 *..s ....... a.... . .00.... ....XXKXX XX XX XXX X ...... 00 00.....

0035 ........... 0.0..XXXX oX.XXXoXXXXXxXXXXXXXX ..........o
0036 ...... 0. .. XX.*XXXxxxxxxKxooxxxxxXXXXXXXXXXXXXXXoo.....
0037 o* .o......... .. XXXXXXXXXX..XXXXXXXXXXXXXXXX........O
0036 e ... soo e e .XX X XX X XX XXX.......XX XXX XXXXXX XXXX XX ao os.owe.
0039 * .. so o oaXX XX X XX XX X X k..so.&.o.XXXXX X XXX XX XX XX XX..o.oso
0030 a.. .XX000XXXXXXXXXXX XX X.....so....XXXXXXXXXX XXXXX 0....owe
00891 *.0 ... 0 X XX XX X XX X XX. o.&.*......o.XXX*XX XX XX X XXXX X XX.. *..0

0043 .so...eXXXX XX XX XXX XX oo..&o..00 .. XX XX XX XX XX XX XX X XX o..a.

0042 , ....... ,XXXXXXXXXXXXXXX....s.we..X0XXXXXXXXXXXXXXXX XX....see
34 . . o ea X.XXX XXXXXX XX XXAs o 9 *XXX XX XX XX XX XX XX XX.. *..

0C46 4 .e ... .o .ooXX XX XX XX XX XXXo.o.oo..*XXXXX XXX XX XX XXXXXX X....a .*a
on*0U7 0 ....... *XX XX XX XXXXXX xe ..... oo..XXXX XXXrXXX XXXX XXXX XX . X..eso
D C4 *.... .s XX XXXX XX XXXoeXoeXo..a.0X XX XX XX X X XXXX XX XX XX X eX*.o
1049 7 ..see*sees.XXXXXXXXXXXXX 00&0xxxxxxXXXXXXXXXXXXXXXXXXXXXX...
0(458 . ... 00.ses.xXX XXXXXXXXXX XXXX xe* XXxXXXXXXX XXXX...........a
00491 0 . ... 00a X XX XX XX X XX X XX XX X X X X XXXX XX XX XX XX X e 0 o...o.
0052 . .. .aXXX XX XX XX XXXXXX XXXXX XX XXXX XXX XXX X XXX0 0 0 0 0.....
0053 0 0 * 0 ... XXX XXXX XX XXXX XXXX XX XX XX XX XXX XX XXXXX.we .............0
0CS29sw * a XX XxXXXXX XX X XXXXXX X XX XX X ~xXXVXXXXX so a w* 9 o s we
0L30e s *X XX XX XX X XXAX XX XX XX X XX XYXX XXXX XXXoXs.o..o.o.o..o.e.o.o.
00C56 * . gosoXXXXXXXXXXXX XXXX XXXXXXXX XXXXXXXXXXX o 0 0 ..so.0....se
a0IS5 * soOXXXXXXXXXXX XXXXXXXXXXXX X XXXXXXXXX..0 ewe* 6069690...

OCS75 ex X.XXXXXXXXXX XXXXXX XXXXXX XXXXXXo.........sees.a...as....

a us 9 1 OXXXXXXXXXXXXXXXXXXXXX XXXX06.0000000.so..... .0000*
0060 . eX X X X XX XX XXXX XXXXXXXX ao0&*&oooo0oo&. 0 o 0 o o a o...o...a.so........

0-62 le* ... XXXXXXXXXXXXXXXX........................ @6000

0)063 . 0.sXX X X X XX X X *** ****.***a***o*****a****...****o*a*o e a *ae****

Figure 3.8: Printout of binary matrix of area EGGENBERG.
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Editing is with a text-editor to preparate the data for
establishment of the coordinate list, line file and the ske-
leton part of the region file. This is done from the raw di-
gitizer data in program MAPREAD. This provides the following
elements in the line and region files.

Name = 'S' or 'L' with automatically assigned
number;

Window with automatically defined dimensions;

Indices (addresses) of start- and endpoint in the
coordinate list;

Coordinates of start- and endpoint.

For quality control and to support the 2nd step the data
can be output in the form of lists or graphical plots (pro-
gram MAPOUT, see section 3.3.2).

(b) Step 2: Graph generation

Program GRAPHREADgenerates the graph, fills up the region
file by adding to it all areas, and completes the line- and
region files with all pointers.

Input to program GRAPHREAD at this time is manual. It
consists of names and types of regions and identification of
area boundaries as a sequence of numbers of lines and pseudo-
lines. Limited resources prevented'us from going into auto-
mation of graph generation.

(c) Printout for control

The file sizes can be easily verified in a specific
control printout. Figure 3.9 presents a section of such a
control printout of the data bank GRAZ. Units are computer
words (36 bits) as occupied on disk. The logical unit of the
coordinate file is a pair of coordinate values occupying 2
words.Therefore there are 1910 coordinate pairs in the file.
The logical uniut of the region- and line files in 28 words. There
are thus 6216:28 = 222 regions and 3304:28 = 118 lines.

CARTENDATENBANK DI8AG*PAFS :GRAZ

KARTE:GRAZ FTLE:KCORBDINATEEN IST 3820 WORIE LING
KARTE:GRAZ FILE:REGIOnE& IST 6216 WGtTE LA?%G
KARTE:GRAZ FILE:LIN LE' 1ST 3304 WONTE LANG
KARTE:GRAZ FTLE:STRLKTtJR IST 5r-(10 WORTE LANG

Figure 3.9: Control printout of map data bank Graz.
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3.3.2 Data output

Data output is with program MAPOUT in the form of lists
and graphical plots. Output routines are interactively star-
ted (format free input with input requests). Output devices
available at this time are line printers and drum or flat bed
plotters.

Program MAPOUT was used to generate figures 3.2 through
3.7 and 3.9. It can also produce combinations of lists, such
as of coordinate and line lists as shown in figure 3.10.
Graphical plots in figure 3.3(a) were enlargements of speci-
fied features of the data bank of which a larger portion
was presented as figure 3.2, all plotted with the same pro-
gram MAPOUT.

3.4 CONCLUSION

Several structures exist for the digital map data in the
current application. These can be grouped into three main
groups:

- the map data bank with its coordinate files,
element lists and topological structure;

- the polygon (vector) structure of individual map
features;

- the (binary) matrix structure for compatibility
with digital images.

The apparent complexity of a digitally implemented topological
structure has great benefits when the data must be analyzed
and lengthy search processes can be drastically shortened.

The polygon (vector) structure of individual map features
is an intermediate structure that is feature-oriented. It
has the drawback of wasted storage if large data quantities
need to be kept in this format. But in otir application this
drawback is irrelevant because the structure is only used as
an intermediate one for the ultimate presentation in a
binary image: this is the structure needed to input map data
into a digital image processing system.
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4. MAP DATA IN IMAGE COMPATIBLE FORM

4.1 GENERAL

The main current application of the map data bank of
chapter 3 is to serve for experiments to automatically merge
an image with a map. Applications programs therefore address
the problem of extracting data from the data bank in a format
suitable to use with digital images.

Within the overall flow of operation this task occurs
in program MAPTRANSFORM which in turn is called in statement
(9) of procedure OVERLAY (figure 2.5).

The application programs can be grouped according to
the data structure used. figure 4.1 presents an overview.

DtnakKordinatenliste Biralre Matrix

MULBIN
RAND TRAPOL POLBIN ADDBIN

NOTBIN
SUBBIN

Figure 4.1: Existing application programs for the map data bank.

Programs RAND and POLBIN serve to convert one data structure
into another one. The other programs are to operate on a given
data structure: TRAPOL performs a geometrical transformation,
set operations are feasible with programs MULBIN, ADDBIN,
NOTBIN, SUBBIN; program MASS computes the centroid of a feature
from either its coordinate list or its binary matrix. One may
argue that MASS creates a new data structure (the center of
gravity) from other structures.

Program RAND extracts from the data bank the contour of a
feature or object in the form of a coordinate list. These da-
ta are then available in either a vector format or in raster
presentation for further processing in the context of digital
image analysis.

4.2 EXTRACTION OF A FEATURE FROM THE DATA BANK,PROGRAMM RAND

As was mentioned before it is through routine MAPTRANSFORM
that a map feature is transformed into an image compatible form.
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The PDL formulation is presented in figure 4.2. It calls
the programs listed in figure 4.1.

(1)procedure MAPTRANSFORM (map, object, binarymatrix):

(2)begin

(3) RAND (map, object, polygon 1);

(4) TRAPOL (polygon 1, polygon 2);

(5) POLBIN (polygon 2, binarymatrix);

(6) end

Figure 4.2: PDL formulation of program MAPTRANSFORM

Program RAND is important for ARSIM because it addresses
individual features of the map data bank. Given the name
(regnam) of an object RAND generates the boundary polygon
as a stream of x,y coordinates.

The PDL-description of RAND is presented in figure 4.3.
RAND first uses program KASUCH (map, regnam) to search in
the region file for the number NREG of the description of*
the object and from there takes the REG-item associated with
object REGNAM. Should the description of the region show
that it is a skeleton, then the search is simple: a file is
filled with a sequence of skeleton points from the skeleton
coordinate list (Fig.3.1) in positive and negative direction
(printl(+l), printl(-1)). This ensures that in a conversion
to a binary matrix one has 2 border points along each direc-
tion of a raster line. This also enables one later to widen
the skeleton.

Is the object an area then RAND goes along all LIST- and
LIN-items of the region using pointer IREG and routine
CONTINUOUSLINE. The main subroutine in RAND is CONTINUOUSLINE.
It is presented in figure 4.4.

In order to describe RAND and CONTINUOUSLINE, let us
now consider two different cases, first a simple one, with an
area that is only defined by lines, then the complex one,
with an area within another area, defined by lines and
skeletons.

4.2.1 Area defined only by lines

The search in the region file results in a pointer IPL
(= element (c) in chapter 3.2.6) to a REG-itm (IREG). This
in turn produces the first LIST-item ('liste') and enters into
subroutine CONTINUOUSLINE. This defines through routine REGLIS,
whether or not the associated LIST/LIN-item concerns a line
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(1) procedure RAND (map, regnam, polygon);7

(2) begin

(3) LPSO:-0;,

(4) LISTA:=0,

(5) NREG:=KASUCH (map, regnam);

(6) if NREG <0 then "not found"
(7) else

(8) begin

(9) readrg (Si, NREG);

(10) IREG:=IPL (S1)i

(11) if RA (IREG) 24 NREG then "IDB-error"

(12) else

(13) begin

(14) assign polygon file;

(15) initiate polygon;

(16) if regnam is a skeleton then

(17) begin

(18) printl (+1),-

(19) printi (-1),-

(20) close polygon;

(21) close polygon file;

(22) end else

(23) begin

(24) liste:= PLIST(IREG);

(25) while liste 0 0 do
(26) begin

(27) CONTINUOUSLINE (LPS0, LISTA, liste)i

(28) close polygon;

(29) liste :=LISTA;

(30) LPSO:=LISTA: 0
(31) end

(32) close polygon file;

(33) end

(34) end

(35) end

(36) end.

Figure 4.3: PDL description of routine RAND.
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(1) procedure CONTINUOUSLINE (LPSO,LISTA,liate);
(2) begin
(3) case REGLIS (liste) of
(4) 'L': begin
(5) readl(Sl);
(6) case REGLIS(liste) of
(7.) 'L': begin
(8) readl(S2);
(9) switch:- 1;*

(lo) if start 1-start 2 or start 1-end 2 then
(11) begin
(12) printl(-1) ;top:-end 1
(13) end else
(14) begin
(15) tap:-start 1; printl(+l)
(16) end
(17) end
(18) 'P' switch:m 2;
(19) eof:begin printl(i.1);switch:in 3 end;
(2o) end
(21) 'P': begin
(22) readrg (Si);
(23) LPS0: - line;
(24) case REGI.IS (liste) of
(25) 'L': begin
(26) readl (S2);
(27) switch: -1;

(28) top 1: -top: -NAEIJER (start2,end2,S1)
(29) end
(3o) 'P': switch: - 4;
(31) eof: begin printl(+1); switch:- 3 end;
(32) end
(33) eof: begin
(34) if LISTA -0then "no boundary";
(35) switch: - 3;
(36) end
(37) case switch of
(38) 1: begin
(39) if top - end 2 then printl(-1)
(4o) else printl(+1);
(41) L4;
(42) end
(43) 2: begin
(44) readrg (S2);
(45) top:- NAEHER (start l,end 1,S2);
(46) if top-start 1 then printl(-l)
(47) else printl(+l);
(48) L5;
(49) end

Figure 4.4. Routine CONTINUOUSLINE(cont'd on nextpage).
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(5o) 3:;
(51) 4: begin
(52) if IREGA=IREGB then
(53) begin
(54) case SPITZ of
(54) 1: begin
(55) top 1:otop:-start 1;
(56) S2:=Sl;
(57) end
(58) 2: begin
(59) top 1:-top:-end 1;
(6o) S2:=Sl;
(61) end
(62) 3: begin
(63) LPSO: s 0;
(64) case REGLIS (liste) of
(65) 'L': begin
(66) readl (S2);
(67) if start l-start2 or start 1=end 2 then
(68) begin
(69) printl(+l);printl(-1);topl:-start 1
(7o) end else
(71) begin
(71) top 1:-endl; printl(-1);printl(+l)
(72) end;
(73) if top-end 2 then printl(-1)
(74) else printl(+l);
(75) L4;
(76) switch:=I;$ dont enter L5 in line loo %
(77) end
(78) 'P': begin
(79) readrg (52);
(8o) if start 1-start 2 or start 1-end 2 then
(81) begin
(82) printl(+l);printl(-1);topl:-start 1
(83) end else
(84) begin
(85) top 1:=endl;printl (-1);printl(+l)
(86) end;
(87) .IPEGA:=IREGB
(88) end
(89) eof: begin. "Ireg-skeleton";switch:- 3 end;
(90) end
(91) end else
(92) begin
(93) $ IGA#IREGB
(94) readrg (S2);
(95) top:=start 1;
(96) if top~start 2 & topend 2 then top:-end 1;
(97) top 1:- top;
(98) IREGA:=TREGB
(99) end
(100) if switch - 4 then L5;
(lo) end
(1o2) end*

Figure 4.4. Routine CONTINUOUSLINE(COntinued).
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(1) procedure L4;
(2) begin

(3) while REGLIS (liste) = 'L' do

M begin
(5) readl (SI);

(6) if top = endi then printi (-1)

(7) else printi (+1);

(8) end

(9) if REGLIS (liste) = 'P' then

(io) begin

(11,) readrg(S2);

(12) L5

(13) end

(14) else

(15) if REGLIS (liste) = eof then L6;

(16) else error;

(17) end.

Figure 4.5: PDL-description of procedure L4 within
CONTINUOUSLINE. L4 follows a contour
along lines (segments).
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('L'), a pseudo-line ('P') or the end of the feature ('eof').
With the present assuntions it must be a line 'L'. We have
to find now the direction in which the sequence of coordinates
must be ordered.

Therefore one reads from the line list the current
line (readl (Si)) and the subsequent one (readl (S2)); Sl and
S2 denote two different storage buffers. Then it is a trivial
task to find the direction from statement (10) of program
CONTINUOUSLINE. One now has to copy the points of the line from
the coordinate file to the polygon file in the order resulting
from statement (10), either as printl (+1) or printl (-1);
"top" is set as the last point read and is kept for further
use. Successive lines are then added on using procedure L4
(f'igure 4.5). This is repeated until pointer PNEXT of the
LIST-item "liste" equals zero. Then procedure L6 is executed
(f'igure 4.8) to terminate the polygon.

4.2.2 An area within another area defined by lines and
skeletons.

This is the more complex case. It becomes relevant if a
LIN-item represents a pseudo-line. One of the two pointers
PRI, PR2 must then point to the parental REG-item, the
other pointer can also point there. In that case one is
dealing with a pseudo-line connecting for example one island
with the boundary of a lake (area within area). Or the
other pointer must point to a skeleton. Pseudo-lines connect-
ing islands with a region boundary are detected in proce-
dure REGLIS. Since they do not affect the polygon of the
current boundary level the part of the line list between
the first and the second appearence of such pseudo-lines
are skipped in REGLIS and the type of the following LIN-
item is returned. To resume the skipped list part the
pointer to the first LIST-item after the pseudo-line is
retained in LISTA. After completion of the current polygon
the polygon circumscribing the island is added to the poly-
gon file as shown in lines (25% to (31) of procedure RAND.

If a feature's contour meets with a skeleton the al-
gorithm enters procedure L5 (Figure 4.6). The entry state
is defined by the "top" of the contour generated so far
and a skeleton stored in buffer S2. The direction in which
the contour follows the skeleton is determined by the next
LIST-item. There are 3 cases to distinguish.

Case SKi (figure 4.7):

From the skeleton border the contour continues with a
line (lines 49-55 of L5). Rename "top 0". Procedure
NAEHER determines the new top which is either the start-
ing (start 1) or the end point (end 1) of the line so
that it is nearer to the skeleton. Then the polygon along
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(1) procedure LS;

(2) begin

(4) while REGLIS(liste)= 'PI LIND do

(5) bein tre

(6) if IREGA=-IREGB then

(7) begin

(8) case ISPITZ of

(9) 1:begin

(lo) RASKEL(top,start 2,S2);

(11) top:=start 2

(12) end

(13) 2:begin

(14) RASICEL (top, end2,S2);

(15) top:=end 2

(16) end

(17) 3:begin

(18) if top =start 2 then

(19) begin

(2o) RASKCEL(top,end2,S2);

(21) RASKEL(end2,top,S2);-

(22) end else

(23) begin

(24) RASKEL(top,start2,S2);-

(25) RASKEL(start2,top, 52);

(26) end;-

(27) LIND:=false

(28) end

(29) end else

Figure 4.6.:PDL-description of procedure L5 within

CONTINUOUSLINE. L5 follows a contour along

pseudolines,which separate the region from

adjacent skeletons (continued on next page).
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(3o) begin $IREGA # IREGB $

(31) readrg(Sl):-

(32) if start 1= start 2 or start 2=end 1 then

(33) begin

(34) RASKEL(top,start2,S2):

(35) top:=start 2

(36) end else

(37) begin

(38) RASKEL(top,end2,S2);

(39) top:=end2

(4o) end

(41) IREGA: = IREGB;

(42) S2:=S1

(43) end

(44) end while;

(45) if not LIND theiL4

(46) else

(47) if REGLIS (liste)= -L' then

(48) begin

(49) readi (Si):

(5o) top 0:= top;

(51) top:=NAEHER(start 1, endl, S2);

(52) RASKEL(top 0, top, S2):

(53) if top=start 1 then printi (-i-)

(54) else printl(-l):-

(55) L4

(56) end else

(57) if REGLIS(liste) = eof then L7

(58) else error

(59) end

Figure 4.6: PDL-description of procedure LS within CONTINOUS-
LINE. L5 follows a contour along pseudolines,
which separate the region from adjacent skeletons
(continued from previous page).
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skeleton

contour

Figure 4.7: Case SKI of a skeleton meeting a contour.

the skeleton between top 0 and top is generated by proce-
dure RASKEL. From top the algorithm runs as described in
chapter 4.2.1 (procedure L4).

(1) procedure L6;

(2) begin
(3) if LPS0 # 0 then

(4) begin

(5) IREqA: PRI (LPS0),

(6) if IREG = IREG& then IREGA = PR2 (LPSO);

(7) readrg (Si) *

(8) RASKEL(top,topl,S1);

(9) end;

(10) end-

Figure 4.8: PDL-description of procedure L6 within CONTINUOUS-
LINE. L6 closes a contour when coming from L4.
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skeleton ]
I ! I

contour

Figure 4.9:Case SK2 of a skeleton meeting a contour

Case SK2 (figure 4.9):

It follows a pseudo line of the same skeleton (5REGA =

IREGB; lines 6-29 of LS). This happens for example when
a dead end road enters the region. The contour must fol-
low the skeleton until its limit and return on the other
side of the skeleton. The two limits of a skeleton
are marked in the LIST by special PL-pointers: 262140
marks a start and 262141 an endpoint. Function ISPITZ
determines which limit enters the region. It returns 1
if it is a start point, 2 if it is an end point and 3 in
a special case: The contour joins the skeleton in a limit
point and the other limit lies inside the region. This
skeleton is described by exactly 2 pseudolines and the
two limit marks. Therefore the contour must follow the
skeleton to the opposite limit and return back to the
starting point, which remains the top of the contour
polygon. Hence the algorithm returns to procedure L4.
In the first two cases ISPITZ = 1 and ISPITZ = 2 the way
of the contour can be traced until the limit point, which
becomes the new top. The algorithm is then in the same
state than before and iterates in procedure L5.

L-A-
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(1) procedure L7;

(2) begin

(3) if LPS0=Othen RASKEL(top,top 1,S2)

(4) else

(5) begin

(6) IREGA-.,OR1 (LPS0),*

(7) if IREG=ZREGA then IREGA:=PR2(LPS0);

(8) if IREGA=-IREGB then

(9) case ISPITZ of

(10) 1:begin

(11) RASKEL(top,start2,S2);-

(12) RASKEL (start2, top 1, S2)

(13) end

(14) 2:begin

(15) RASKEL(top,end2,S2);

(16) RASKEL(end2,top 1,S2)

(17) end

(18) 3:if top=start2 then

(19) begin

(2o) RASKEL(top,end2,S2):

(21) RASKEL (end2,top 1.,S2)

(22) end else

(23) begin

(24) RASKEL(top,start2,S2);

(25) RASKEL(start2,top 1,S2)

(26) end

(27) else

(28) begin $ IREGA; IREGB$;
(29) readrg (Si);

(3o) top0:-start 1;

(31) if end 1=start 1 or end 1= end 2 then

(32) top0:-end 1;

(33) RASKEL(top,top0,S2);*

(34) RASKEL(top0,top 1,S1)

(35) end

(36) end

(37) end.

Figure 4.10: PDL-discription of procedure L7 within CON~TINUOUS-
LINE. L7 closes a contour when coming from LS.
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skeleton B

Figure 4.11: Case SK3 of a skeleton meeting a contour.

Case SK3 (figure 4.11):

It follows a pseudo-line of another skeleton (IREGA=IREGB;
lines 30 - 43 of L5). The contour then follows the first
skeleton (by RASKEL) until the joint point with the other
one, which is the new top to continue and interate in L5.

There exists a case where the end of the LIST follows the
skeleton; this is not treated here separately, because a
contour is always a closed line. The first LIST-item there-
fore follows the last one and allows to distinguish the
three cases. Some detail that is different here from the
previous one is shown in procedure L7 (figure 4.10).

4.2.3 Calling program RAND

Figure 4.12 is an example of an interactive call to
program RAND with the response as an operator receives
it. Two areas are called:

EGGENBERG and SCHLOSSEGGEN

that we have used in chapter 3.

. . . .. . . . . . . . . ... ... I. . .
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SCOM REGREtNZUNbSvLYIERESTMAE

$RAND bA79EG6iEP8F9(
FE'VSrEQ PJ GGENBEG 211*74.6 201'he027 5*"3d) 9e997
MOORDINATEPIFILE EGGEIN8ERG ERSTELLT*

ELAPSEn: 3.,,ir* TOITit.: h4 C1, I: 0 ' I/u: 1.828 SEC

.. PANn SCHLO SSE 66E O
FENrTER VON SCHLOSSEWM=J "13*69P 2r(48,16- 1.*224 2.12'
KtOROINATENFILE SCHLOSSEGG0' ERSTELLTe

ELAPSED: *773 TOTAL: 16('9 Cil j: 6 12 i/U: 1*22.12 SEC

Figure 4.12: Call to extract regions EGGENBERG and SCHLOSS-
EGGEN from the data bank GRAZ.

The call includes the name of the data bank (GRAZ) and]
of the region (e.g. EGGE1NWERG) .Interactive commands are
preceded by a 1$1 sign. The printout also generates
The machine response has no preceding symbol. Times given
in the last row of figure 4.12 are machine dependent. on our
machine (UNIVAC 1100/81) the CPU-time was 0.029 seconds.

4.3 OPERATIONS WITH THE EXTRACTED FEATURE

4.3.1 TRAPOL

Procedure TRAPOL (figure 4.13) performs a simple linear
geometric transformation of the polygon created by program
RAND. It also can widen individual skeletons to a specified
width.

The transformation T(X) is:

X (2 A 2 +]

with vectors () , 2j and b C R2 and a square tra rsf ormation
matrix A. Transformation parameters must be computed in a
separate program.
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(1) procedure TRAPOL (polygon 1, polygon 2):

(2) begin

(3) read parameters of transformation T:

(4) assign file for polygon 2;

(5) initiate file;
(6) for all part of polygon 1 do

(7) begin

(8) for all point p of part do

(9) polygon 2: = polygon 2 + T (p)

(10) close polygon:

(11) end
(12) close file;

(13) end.

Remarks to procedure TRAPOL:

1) Description of a polygon as a syntagmatic grammar

(VAUQUOIS, 1970):

G = (m 2 V (endofpart},{polygon, part, point}, polygon, P)
with

P = (polygon -b part polygon / part

part - point part endofpart /endofpart

point -o (x, y) E R2 }

2) "polygon + point" means attaching the point.

3) "close polygon" writes the endofpart.

4) T (2) =A P + b with

A = ( al  a12) anda 21 a 22

b = 12

Figure 4.13: Procedure TRAPOL
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Widening a skeleton is achieved by displacing each part
of the polygon in a positive direction for one half of the
required width. Polygon elements are then intersected and
the intersection points are then used as the new polygon points.

*$ $CON 3 ENTSPPECHUNGSPUNKTE BESTIMMEN DIE TRANSFORMATIONSFUNKTION

$PASS 206. 20409 206. nv'5i. 220. 2040. .

1. 40e8 1. 1. 60. 40.8
TX = 4.214*X + 0 WO*Y * -867.143
TY = eCfl*X + -2.34 1*Y 4 4816s800

,COM 8EGRENZUNGSPOLYGONF INS NEUE KOORGINATENSYSTEM TNANSFORMIEHEN:

,TRAPOL EGGENBERGEGPOL
TRAmSSFO0RIQERTER FILE EGPOL HAT 168 PUNKTE

SEIN FENSTER : 25 3 25 27

ELAPSED: .554 TOTAL: 1eV83 CPU: .015 1/O: .453 SEC

Figure 4.14: Call of linear transformation of region EGGENBERG.

-- ST UAWL .rC3,Lc .,45rOt

TRA01'!)i[FPTE FILE SI5POL HAT 93 PUivk[L
c-CIM~ FENSTFR : 2 24 41 1

FLAPcrO: . 1 A TOTAL : .52 CPL: .16 1/0: .326 SEC

, SCO M %KFLE'T0,: vE;,,i"RFjTfr ( STRASSE 2 X ,-'.3

91'rqAP('L S4,)PI-L .Sb %P-jL-4 # .3
TrA!bSFORMIERTEP FILE S4rPOt-4 HAT 102 OUNKTE

%EIM FEP4STFP : 2 24 41 iu

FLA-S E 0.: 3P'k T OT AI. 'Vo CPII* .'2r IIU: 2 1 5(C

Figure 4.15: Call of program TRAPOL to transform and widen
the skeleton.
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Figure 4.14 is an example on an interactive call to
the linear transformation. Here, transformation parame-
ters are computed using 3 control points in an interac-
tive caJito program MASS that is then followed by TRAPOL.
MASS uses 3 points (6 coordinates) in the map system,
followed by 3 points (6 coordinates) in the transformed
system. The call to TRAPOL requires two coordinate lists:
the one to be transformed and the one after transformat-
ion (EGPOL).

Figure 4.15 is an example for transforming skeleton
SOOOOOOO0045 into S45POL, and then widening it to 0.3
units and storing it in file S45POL-4.

4.3.2 POLBIN

A discussion of procedures is decribed by NEWMAN and
SPROULL (1979). The procedure used in our case is illustrat-
ed in Figure 4.16.. One intersects each part of the polygon
with equidistant (vertical) straight lines. Intersection
points we ordered along the partial polygon (horizontally),
and are then also ordered within each straight (vertical)
line. One then has a raster image of the contour.

(1) procedure POLBIN (polygon, binmatrix)

(2) begin

(3) binmatrix: = (0);
(4) for all part of polygon do

(5) begin
(6) binloc: = (0);
(7) PO: = first point of part;

(8) for all point PIC part - JP0J do

(9) begin

(10) if x(Pl) - x(P0) = 0 then

(11) for i.=y(PO) until y(P1) do
binloc (x(P0),i1:= 1;

(12) else
(13) INSORT (store, P0, P1);

(14) P0: = Pl;

(15) end

(16) for all columns IX of binloc do

(17) while 3 ya, ye c store do
(18) for iy: = [ya+.5] until lye+.51 do

(19) binloc (IX, IY): = 1:

(20) binmatrix: = binmatrix - binloc

(21) end

(22) end.

Fg ure 4.16: Procedure POLBIN.
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It is possible to number all edge raster points on a
straight line and set all raster points between odd-numbered
and even-numbered given edge raster points to 1, all others
to 0. This then gives a binary matrix of the area, a so-called"fill-in" .

*S $CO BEGRE10ZUNGSPOLYGOIF IN BINAERE MATNIZEN UMFUkMEN:

** SPOLBIN EGPOL9EGBIN91W
AUS EGPOL EGRIN MIT FENSTER 1 1 56 35 GENE5IEkT

ELAPSED: o992 TOTAL: 1.075 CPU: oU61 I/U: .391 SEC

Figure 4.17: Call to program POLBIN to convert vector to
raster data.

Figure 4.17 is a sample call to program POLBIN. The
binary matrix is to be stored in file EGBIN. IW is a
window of 56 by 35 pixels. If IW is not given, then POLBIN
itself computes the minimal window to fit the binary ima-
ge. The binary result is shown in Figure 4.18.

SPALTEN 0:01 81S 0056

0001 ........... o.... e.. .. .. ... o ..o * e * ** oe e -

0002 ................... boo boo oo bo *bg b o flbb bo o * e b oC *

0003 .......... 0...........e.......XX.o b .. ee e.

0004 .... . ... 0...o XXX ** .C go e *g

o00 . .................. ... .. X, X. ,.. .....

00 0 .................... ...oXXXXXXXXXXXX..... e.....
0007 . ....................... oo ...o XXXXXX. .... .0 ee0e eoo
6008 ..................
0009 .......... ... . .• o e ooe ee gXXXXXXXo "o o.o

C00 °e .... ........ eo e .. ... e .eo.X XXXX XX.... 0e . e .
0e,.11 . .oo o . e b e 1e .o oo .e oXX.X XX eo bo b* be

0012 .................. XXXXXee X .bee -
0013 ................... ..... 0-0-....EX EXXXXXXXXXXXXXXX....
0017 .................. .... 00 go X .X ..o XXXXXX* ..00e0 .o

0018 : ebbb bbbbbbbbbbbbbb oe I e K X bobo .ooXX XXXXXX. .. . ..C016 ............ ~ 00 00 p oo eo oe X XXX X X X X XX XX XXo °e 0 ee

010 b..• bbbb •" ° be• beeo o e o XXXXXX b XXXXXXXX e 0 06bb b

0019 *bbb °o be bbo bb • bo bbboe oXXXXXX: Xo o XXX XXXbbbe°ooeob

0020 . bbbbbbbbb •o •b • e o 0o oe eXXXXXXXb .. XXXX XXXXX o e.

0022 .............e.e.e..b oooooe XXXXIXxxbXXXXXXXxxIC.*.bbb

0023 ........................oo oXXXoo o XXXX XXXXV0 e ee .
0024 eeo oee....e0.. eo XXXXXXXXXXXXXXX Y o.e c cc e. 4-0025 ::.::° ..., ........oe.o..o • : E I XooXXXXXX. .e * e .e , e -0028 • •0 .eeeee. be~e•. e obC ee XXXXXXXXXXXXXoo oe.e eb eoeb..

0 2 .1 eo •co : 0• e° : •e : o:: :: XXX-XXXXXXXXXXX:o : oe e q -o

0027 bbb e e. • ebb • b boo b XXXXXXXXbe bbbo eo o b o e bbbo

0029. ....................... e.ebbe C. be e e C. CC bb CC e CC be oo e

'03g r 4 .18 b: . e o .0 .e o e b b o e Exm l of b nr ma eo E BE o Gb Cc bo o

Figure 4.18 : Example of binary matrix EGGENBERG.
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4.3.3 Geometric set-operations

The raster format is well suited for the most important
geometric set-operations. Two or more binary images can be
connected on a bit level using logical functions that are
very fast: the currently used computer has 36 bits per word and
36 logical operations can be done in parallel. Program
MULBIN forms the intersection of two areas (logical operator
AND), ADDBIN forms the union (logical operator OR), NOTBIN
forms the negative of an area (logical operator NOT) and
SUBBIN produces the absolute difference between two areas
(EXCLUSIVE OR).

Figure4.19 shows the printout of the program call and
the result of a union of region EGGENBERG in binary format
(stored as SCHBIN) and a road (S45BIN). Programs LIBIN and
STOBIN are input/output routines.

4.3.4 Map information as an image

The binary matrices now enable one to generate chloro-
plethmaps of the regions in the data bank. Be Mi , i = 1,

n mutually exclusive binary matrices and gi, i = 1,
n [n C 0,255] associated "gray values" we then can

build a gray-tone digital image B:

n
B = ( • Mi)

i=1

Image B can now be processed in an image processing system
such as our DIBAG (LEBERL, KROPATSCH, 1.97).

An example of such a chloropleth presentation is shown
in figure 4.20 with 4 regions:

areas EGGENBERG, SCHLOSSEGGEN, BAHNHOF, and skeletons
SOOOOOOO0088, S00000000045.

4.3.5 Program MASS

MASS computes the center of gravity S of a region and
its area for both vector or raster format. The formulae are:

(a) vector format with polygon (xi, yi i = 1, ... n
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aSCOM VEPCINdIGUNG VON SC'4LOSS AIT S45:

asSLIBINi SCHRIN
RIN4ERE PATRIX VON FILE SCH81IN MIT FENSTEk 1 1 56

SAOOB8ftd S45RIP

SSTOBIN VEREIA"IGU14G
BINaERF MATR~IX AUF FILF VEPFINaIGUNG~ GESPEICHERT

b)
SP AL TEa fitP01 P~IS rCC5A

0001 .... o..o...o* 0***.***.. 4O 0. 0

C002 ........... o*ee *o.0 0ooooe os000

0003 ... o.ooooo.o .0 000.000006*ooe*

0004 ..... *..0*60900.*.****. *0 ................... * 00 00 0060000

c05oosoo~ooooeo 00000000000000000

0006 *00000000000000000000000 0000

0007 e .. eeeoee0o0*ease*00 00 s 00 00o*.eeo.o~. so 00as00 a

(OO3 .. 0..00.00000 00 s ..0 .00 as e0 00 00 0e so 0o aoe

6* so a 0 0 *6 as 60 *0 *0 0 a 0* *6 a0000005000 40 & * o 0O

ooo0e000oe0a0 a0&0 a00 6a a sos00so e000 s so a0 so000as * so e0005

I L ***e e*%* eggs........ as 66 0 s0 osoeso*0000 ........... 0600000

C012ooaooeoo0 *.********....***

t17

.ojoIoAoooaoooo a4aas oa oa o o as so ..... XXXXX ..........o 6* egg 06

"019 ase~eooooeooo o *6 as oXXX X so oe 00 *0 *a 00000a

t~ 2sl*0000 o * aoo so@ ** so 00000 eXX XXe.o.o o ......

ri'21 a a *4 a 4 4 *4 6 oe..ooso as0*aoosXXXXXeeooooo o o so000600

"fl22 .. e~e a4o66* 4 o o as * as so s.o .. a w oXe as o so oa so so e* 6

C b2 3 a.000006006 00 6065000050000000 soa s *a o ** s oso *0s0 s ss s ssess

I *2h *woo.oooo~~oooeoXeooooXXXXXAoo*XX~oeooooooooeoooo

U027 *,XX1X oeoeoo..oe .XX. o*e go sxo *000060000 00.00 00 0.0 0000

d. *i?..o.ooeXooeXXeXeoooX..*ooXXX.Xe.oooooeoooee soo a*a a

*.viooooooaxooooeoe~ooo.o~oooo~o~o~ooeoeoeooooo 0oeoeoea

Figure 4.19: Call to program ADDBIN to combine area
SCHBIIN with skeleton S45BIN (a road),
and the result of extracting the program.
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00000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000Of)00 0000000000
ooooooooo 111111111122 22222222 333333333 34 4444444445

12345678901234567890123456789012345678901234567890

00001
00002
00003
00004 U
00005 WW
00006 W

00007 UUWUWW WUMWW
00008 0U UUW
00009 000000 0O6W
00010 0OOO0OOOOOOIWW
00011 OOOOOUW
00012 OOOOOWU
00013 000006W

00014 OOOOOOWU
00015 000 OUU
00018 000000W
00017 OOOOOUWU
00018 0000OWU
00019 0000 0000000W
00020 00000000..000000 WU
00021 0000000** ***OOOOOUSW
00022 0000000*****000000(J4S
00023 0000000****O00 GOGOSSW
00024 0000*****OOOOOOOSSS
00025 0000000***00000000 0SW
00026 000000000000 0000
00027 00000000000 00 00000
00028 OO000000000000OW0
00029 OOOOOOOOOOUMUWUW
00030 WWWWWOOOOOOWW
00031 WIJUW UWbWbJUW
00032 UW WW6WW
00033 WWWW
00034 WWWW
00035 WWUW WW

Figure 4.20: Chioropleth map of Eggenberg.

The following print symbols were used:

11$1 .. Type 8, railway (BAHNHOF)
"W"...Type 7, road (skeletons)

gloss ... Type 4, open area (EGGENBERG)
..Type 3, built up area (SCHLOSSEGGEN)
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area ( (xi, yi ± 1. n) =

n xi= (yi Xi+l -yi+l

i=.

with x xn+1 Xl' Yn+l yl

Sx  (xi, , i = 1 ... n) =

n

1 i (y.x - x i )  (x+xi+ ) )

3(Yi.Xil - Yi+l'Xi
i=1

S y ((x i , yi ) , i = .. n)

n

= 1 . (xil Yi+l - xi+ + "

S(xi.Yi+1 - Xi+l.Yi)
i=1

(b) binary matrix B (i,j)

area (B) = card {B(iJ) =i

This is the number of matrix elements of B equal to 1.

n m

Sx () = ( F , (i • B (i,J) ) ) / area (B)
i=l J=l

n m
S (B. = ( E (j • B (i, J) ) / area (B)

i=l J =i

Figure 4. 21 is a sample call to program MASS to illustrate

its result.
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es SCO SCHWERPUPKTE * FLAECHEN VON POLYGON UND BINeMATRIX SCHLOSS :

* SLIBIN SCHBIN
BINAER£ !ATRIX VON FILE SCH8IN MIT FENSTEW 1 1 56 35 GEL

IFASS SCHLOSSEGGEN98IN
SCHLOSSEGGEN: FLAECHE= 1.577 SCHWERPUNKT= 214*421 20490326
BINAFRMATRIX: FLAECHEZ 26h.rO SCHWERPUNKT= 36o231 190C38

TX = 4.214-X * .330*Y + -867e402
TY = . OOx * -2e34)eY + 4816e871

SCOP NEUEQ VERSCHIEBUNGSVEKTOR OURCH GLEICHSETZEN OE SCHWERPUNKTE

Figure A.21: Call to program MASS to compute area and center
of gravity, and corrects the transformation
function.

Binary image SCHBIN is first read in. Then the call to MASS
results in the area and centers of gravity of the vector
presentation (file SCHLOSSEGGEN) and of the binary presenta-
tion (file SCHBIN). The results are in the coordinate system
of the data bank (SCHLOSSEGGEN) and of the binary matrix
(SCHBIN). We already had a transformation between the twoshown as figure 4.13 with 3 manually selected control points.
The center-of- gravity as obtained in figure 4.18 is now
automatically transformed and if a discrepancy with the ac-
tual center of gravity in the other data structure exists then
a shift is automatically applied to the transfonation (com-
pare transformation parameters of figures 4.13 and figure 4.18).

4.4 CONCLUSION

It has been shown how elements of a map data bank can
beeactracted and converted to a format compatible with images:
this is through the generation of the contour of an object
from the data bank and subsequent conversion to a binary
image. This image of one object can be combined with those
of other objects to a digital chloropeth presentation of the
map contents. This can then be processed like an image:
both the binary and the chloropleth presentation can be un-
derstood as synthetic digital images.

The binary presentation can also serve as a mask to de-
fine a specific section of an image. This application is
equally important then that of serving as synthetic imarye.
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The most complex searching must be performed in program
RAND. However, due to the organisation of the map data bank
with a separate planar graph, with region- and line files
and aseparate coordinate file, searching can be done effi-
ciently and fast.
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5, PRE-PROCESSING OPERATIONS WITH IMAGES

Any form of digital (or analog) image analysis bene-
fits from an optimization of the image. This precedes
the analysis and is denoted by "pre-processing". One may
classify pre-processing activities as follows:

Single images:
Restoration
Enhancement and Coding
Geometric Rectification

Multiple images:
Data Compression
Enhancement and Coding (e.g. ratioing, directional

cosine, clustering, etc.)

Of the countless methods of image (pre-)processing
there are some of particular significance in the current
context. In order to define these we have to realize that
features are extracted from a map data bank mainly in the
form of contoures of an object; these are then presented
in a binary (black and white only) form. It follows thus,
that also the multispectral image should be converted to
a compatible format. This can be achieved by a clustering
operation of image pixels (region growing) and subsequent
binary coding, to enhance specific areas or the contours
and edges.

We conclude therefore that image data compression
to a binary form, and for the detection of edges in an
image , are essential pre-processing steps in our task.

We have therefore analyzed a number of methods to
identify edges in images, and have implemented various
data compression techniques in order to obtain a pre-pro-
cessed image for subsequent line detection tasks. This
chapter deals first with a mathematical definition of
digital images, edges, linesand neighbourhoods. A number
of pre-processing functions are then defined in mathemati-
cal terms and finally evaluated with experimental data.

5.1 DEFINITIONS

5.1.1 Digital image

We describe a digital image by a function:

g: B * G (5.1)
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of a finite, k-dimensional image area BCIk , where 3N repre-
sents the natural numbers 1,2 ... and k is normally 2.
The function maps B into a finite range of gray values
GC4. For multiple images, e.g. multisprectral ones,
k = 3. We can define multiple images also conveniently by
a vector function

g = (g1 ' g2 ' . . gn )

gi: B * Gi

where i denotes the channels of a multiple image. Each
element of the vector function can be represented by a
matrix of gray values. These matrices consist of the pixels
defined at each matrix location i (row ), j ( column ). We
may in the following denote a pixel as an image point x CB
or by its location (i,j)e B.

5.1.2 Neighbourhoods

We define on image areaB a neighbourhood r(x)to each
image point x.

r(x) C zk is the set of neighbours of x CB if

x r(x) (5.2)

x c r(y) "oy c r(x) (5.3)

where Z is the set of integer numbers.

{ n(x) C B n C34} is a system of neighbourhoods around

xC B if:

(a) V () (x): = (5.4)

xCB

(b) rW(x): = r(x) r B (5.5)

(c) rn+l (x): = y.n r(y)n' B (5.6)
- .r (x)
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It is to be noted that rn (x) does not necessarily contain
n- (x) . r(x) may not need td be a subset10f B wnile r (x)

is.r(x) can have negative numbers, r (x) not.

There exist various types of neighbourhoods as shown
in figure 5.2, whereas figure 5.1 illustrates the r neigh-
bours of Oth, 1st, 2nd and 3rd order of a point x.

3 2 3

3 2 1,3 2 3

2
3 2 1,3 0 1,3 2 3

3 2 1,31 2 1 3

3 2 3

Figure 5.1: 14-neighbourhoods 0th 1st 2nd and 3rd order
of a point x.

5.1.3 Metric

We need for further use a metric in a digital image.
All pairs of points (x,y) QB 2 of an image area must be
related through a neighbourhood of order n. A distance
between x,y is then defined. We can prove the following

Lemma (1):

If there exists for each point x C B a system of

neighbourhoods {ri (x)} and

n
V a B = LJ r (x) (5.7)

xCB nCB0 i=0

where3No are the natural numbers and zero, then

d(xy): = min {k C Wo Ix c rk(y )} (5.8)

is a metric (distance) on B. A proof can be found in
LEBERL and KROPATSCH (1978b).
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For neighbourhoods 14 and r of Figure 5.2, it is
easy to show that 8

k
d4(xx)= / xi - Y / (5.9)

i-i

d8 ( = max (/xi 7 y./) (5.10)
i=l, ..k 1 1

B 1) "4-Nachbar" (Rosenfeld, 1970):

r4f7 ( X): Beachte: card rF4(x) 4

B 2) "8-Nachbar'r Knigszug (Rosenfeld, 1970):

~~ C (X) : -fE}Beachte: card U(F(X) - 8

B 3) "Schrige Nachbarmengen" kfnnten bei Bearbeitung geometrischer
verzerrter Bilder sinnvoll sein:

B 4) Ala Beispiel einer besonderen Nachbarschaft seidie "Springer"-beziehung definiert:

I.
B 5) Den ZuVmglicbkeitin beim "Dame"-Spiel entspricht:

%~ (z):"- mU

Figure 5.2: Five examples of neighbourhoods in digital
images.
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5.1.4 Connectivity

We define a "path" to consist of image points Pjt

i =1... n, pig B and leading fromp, to Pn if

v Pk+l c r 1(Pk) U1APkj 5.1
3lk<n

We define a subset M of B, M C B to be "connected" if

V x,y C M 1 pal-h (pi) from x to yandVpi C M
i

and a subset M C. B is "simply connected" if

- M is connected;
- M = B-M is connected, whereby in M a different
neighbourhood relationship may be defined than in M.

5.1.5 Edges, lines, regions

We now have the tool to define edges, lines and regions.

(a) An "edge" e in a digital image is a pair (io) E B2 of
neighbouring image points if

i E r(o). (5.12)

(b) The "weight" or "value" of an edge is a function

w: B * AR real numbers). (5.13)

(c) The direction of an edge is a function

2 B2 IR (5.14)

We see that each pair of image points defines an edge.
It is its weight that provides the edge with a physical
meaning.

One needs to clearly differentiate between edges and
lines. We therefore define a "line" L as a finite sequence
of edges (e ), i-1, n where consecutive edges ei, eil are
neighbours f one another:
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ei+1 £ A(e i) (5.15)

where symbol A denotes a neighbourhood on B2, analogous
to equations (5.2) and 5.3).

We can define open and closed lines: a line L=(e1, ..en)
is 'tlosed" if

e E A (en).

It has length 1 where

l(L):nn if L = (ei), i=l, ... n. (5.16)

A "region" in a digital image is each simply connected
subset of B.

A "contour" L of a region R is a line L = (el), i1 ...n

with edge ei = (±' ) E B2 if

V pi 4 R & qi R (5.17)e l= (Pioqi)

A region boundary consists of image points hi, i=l,.,.n
and is defined if for all edges (pi, qi) = e. of a closed
contour L = (ei), i=l, n of region R one finas:

Pi =f b i & j/.i

5.1.6 Comment to definitions

it is significant to clearly define edges, lines and
regions to avoid misunderstandings that can derive from com-
mon semantics. Definitions here are based on the concept
of neighbourhood.

A possible confusion of the term "edce" may cononly
be encountered with a situation as shown in figure 5.3.
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range of gray G
values flor
Rl and R2I

1V2

Figure 5.3: Roof and ridge-line.

With an edge-definition, as the one of DAV.IS. (1q73) one will
have difficulty identifying an edge in f-igure 5.3. DAVIS
(1973) defines:

"An edge is the boundary between two regions Rio R 2 of
different, constant gray values."

This could be written as:

(p, q), E L~ p G R 1 & q R R2  R 1fnR 2=0 (5.18)

if

3a<b<c G G( V V a :g (x 1 )5b:5g (x 2Y) )V
x 1 CR 1  x2 CR 2

V V a:5g (x 2 :5b5g (x 1) 5C)
x 1 G R 1  x2 G R 2

(5.19)

then DAVIS (1973) must call all (p,q) C L "edges".

One can employ the definition of edges for multiple

images. Let B C jN3 with the neighbourhood:

r(x,y~k): = (n~vk) /n-x/ + /v-y/ = }(5.20)

where K denotes the spectral. channel.

Then the weight w of an edge e

((xj y 1 kj), (x21y2 k 2)) is

w((x 1 #y1 ,k1 ), (x21y2 Ak2).) : = n-1 ~I(g(x 2 py2 i)-g (x 1"1 1i)) 21

(5,2.U.
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We see that the weight of the edge is independent of
image channel indices kl1 k2.

5.2 EDGE DETECTION OPERATORS

5.2.1 Goneral principles

A primary element of an edge operator is the number
of pixels used to compute the value of an edge. There
exists a great multitude of algorithms and numerous reviews
(e.g. DAVIS, 1973; PRATT, 1978; LEBERL and KROPATSCH, 1978b).
Of these methods, 4 are selected for detailed analysis:
three are linear, one is non-linear.

A general formulation for an algorithm must include
the case of multiple input images: Image, k = 1, ...n.
Edge operations are performed in paralle: a "parallel" al-
gorithm is defined to perform operations 01, 02, "'.O
where the outcome is not affected by the sequence of Rhe
operations.

procedure EDGE (Image, n, f, A)

begin

for all i, j C B do

A(i,j) = f(i,j,n,Image)

end.

Ficure 5.4: PDL-description of an edge detection procedure.

Procedure FDGE addresses image points b C B and
surroundings Uk of b of the order k:

Uk(b): -={x CB I x cr s(b), s k}

The operations of EDGE can therefore be called "local". As
a result one obtains a new (gray-) value gl(b) for image
point b:

91(b): = ob (g(uk(b)).

The parallel algorithm consists of performing opera
t±nOb on all image points b. It is linear if:

V Y 0(ax+by) = a.O(x) + b.0(y).
x,yCg(B) a,bCR
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5.2.2 Linear algorithms

Typical linear parallel edge detection operations
are: high-pass filtering, oriented numerical differenta-
ton, gradients, Laplace-operations. These methods can be
described as an operation gm with a mask m, that is a
(local) function

m: U(x) 3 p

on a surrounding U(x) of an image point x C B. The value
m (b) of b C U(x) is only defined by the relative position

b with respect to x.

Operation gm then followsas:

gin (b):= g(x) . mb(x).x CU (b)

Sample mas1s as used within an 8-neighbourhood r8 of a 2-
dimensional image ar-ea are:

(a) -1 0 1 horizontal forward difference on U (x);

-1 0 1

-1 0 1

(b) -1 -1 -1 Laplace-operator on U (x)
-1 8 -1

-1 -1 -1

(c) -1 2 -1 double horizontal forward difference

-1 2 -1 on U (x).
-1 2 -1

(d) An iterative use of a type of Laplace-operator
is implied in MONTOTO's (1977) method:

ob(b) = (card (U(b))-1)/card (U(b))
rob(X) = -1 / card (U(b)) if x # b.

5.2.3 Non-linear algorithms

Numerous authors have proposed non-linear edge detection
methods (compare PRATT, 1978). These are usually more time-
cynsuming than linear ones and therefore mostly limited to
Uj (x) of r

/ )
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5.2.4 Methods investigated

The following four methods were investigated:

(OP1) horizontal difference

f: Yij= Z xij - xi1j

(OP2) Laplace operator

f: Yij 2= / 4x ij-Xi-lj-XiJ-l-Xi+lj'X ij+i/

This corresponds to the mask in r0 o0
-1 4 -1
0 -1 0

(OP3) operator of Rosenfeld (see DAVIS, 1973)

f: y = E (Xk-X )!+ I (xi-k-Xi+k)Ynk = l i k j i k J I k = l j k i k I I

This operator has been implemented with n = 3.Fig.5.5
illustrates the image pixels entering into the operation
for one output point.-

W3IZ~±

CX ij,

Figure 5.5: Pixel configuration used to compute the value
of an edge with the operator of Rosenfeld for
n = 3.
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(OP4) operator of Roberts (PRATT, 1978)

f: Yij = [(xij - Xi+ 1 J+l) 2 + (Xi+lj- xij+l'2

This is non-linear.

5.3 TEST DATA FOR EVALUATION OF EDGE OPERATORS

The six synthetic images of figure 5.6 were generated
to test edge operators to define an optimum. The images all
show simple geometric forms except for figure 5.6 (f) that
is a segment of an actual LANDSAT image (lake).

.. a . .... . . . . . .
. ....... -aSfl: 0J . .n fl.fl

... S h.~..... n.* . ....... --- ==--- - " +.s=
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(d) Sloping line (e) Curve (f) Kochel-lake

Figure 5.6: Six synthetic test images.
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A theoretical edge reference image is defined assigning
each image point yij E B a value:

g(y ) = max (g(x)-g(a

k=1, 8

with

ak r8 (xij)

and x4 are the pixels from the synthetic test image, gray
valueg are 100 and 110. An example of an original image
section and its edge reference image is shown in fig.5.7 (a), (b).

10 10 10 10 10 0 0 10 10 10

10 10 10 0 0 0 lo 1

0 10 1010 1)
0 10o1

10 '0 10 0 0 10 10 10 10 0

Figure 5.7: Section of synthetic image, bright areas with
gray values 10, dark areas with 0.
(a) image; (b) edge image.

Similary edge reference images for figure 5.6 are shown

in figure 5.8.

The test images were provided with noise:

noisy image = synthetic image + noise * f,

where noise has mean 0 and standard deviation 1; f is a noise
factor. Noise added to images is shown in figure 5.9.

5.4 APPLICATION OF THE EDGE OPERATORS TO THE SYNTHETIC IMAGE

All four edge operators were applied to all synthetic
images with noise factors 0,1,2,3,4.Then the result was
evaluated as follows:
(a) thresholding of edge images creation of binary edge

images;
thresholds used were 60,80,100,120,140;
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Figure 5.8: Edge r'eference images for the synthetic
data of figure 5.6.
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(b) comparing position and number of edges in binary
image with those in the reference image.

From this one has R correctly identified edges, N non-
identified but existing edges with value 0 0, and F incor-
rectly identified edges = 0. Figure 5.10 illustrates the
fact that the sets RN,F are nt disjunct.There are totally
K edges that exist, NK non-edges and B image points.

We see that

card (K) = card (N) + card (R)

card (NK) = card (RNK) + card (F)

card (B) = card (RNK) + card (N) + card (R) + card (F).

From this we compute

PR = 100 card (K) ; PRNK = 100 *card (RNK)
card (K)card (NK)

and finally:

M = PR * card (NK) + PRNK * card (K) (5.22)
card (NK) + card (K)

Figure 5.11 shows the M-values for one test-image (f) and
one operator (ROBERTS).

I STOLR 1 63 I 8C I 100 I 12,1 I 14U I
I---- -- -- --- --- -- -- -- -- -- -- --

I C I 10.4O I 100.30 I 46o56 I 6.56 1 7030 I

zI1 I 1000. I 9C018 I 4e974 1 35065 I 10057 I
I-------------------------------------..

1 2 I 96*91 I 8.18 1 52.55 I 36o20 I 14.39 I

1 3 1 99*51 1 86.26 1 56.91 I 34.56 1 20.39 I
I .... - I- -. .. -- I -....---..... I - -I
I 4 I 98.86 1 9,).82 I .60.07 I 39.43 1 2 .74 1
------------- ----------------- I
------------------------------------------------------

I NY 1 99.65 I 90.29 I 52.97 1 36.48 1 15.48 1
------------- ---------- ----- -

Figure 5.11: Means M of performance of edge operator of
Roberts used on synthetic image Kochel.
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Figure 5.12 shows an overview of all operators and all test-
images, using the best threshold. Fig. 5.13 compares clean
an noisy images.

I -- -- ------ ----- -- -- -- -- -- -- - - - - - -
I I -I
I SILO I K A 0 T E O P E RA T 0 E I[

t .I I
I---------------------------------------------------
I I ROSENFrLD I ROBERTS I LAPLACE I NOR OIF. I

I NORIZONTALE I 99.92 I 99050 I 19.4? I 12.76 1

I FLA04E I 99.93 I 99.51 1 57076 . 30.84 1
I---------I------------I-----------------------z
I DIAGONALE I 99099 I 9678 t 93.67 I 52*94 1

t VENTIKALE L 99.93 1 99.90 I 12052 I 99.53 I
----------------------------------- r

I KURE 1 '99.683 I 991 1 71.72 1 53.02 1
I------I-----------------I-------I.-------I

I KOCHELSEE t 99063 i 99.65 1 49031 I 50.25 1
I --------------------------------------------------
I---------------------------------------------------
I MITTELWURT 1 99.98 I 99.2 I 54.08 I 4909 I
I---------------- ----------------- I

Figure 5.12: Maxima of mean M of performance factor.

i i
SILO I K A N T E N 0 P E R A T 0 R E N I

I I

------------- -- --------------------- I
I ROSENFELD I ROBERTS I LAPLACE I HOR.OIF. I

- - - -- - ---- -- -- -- - ---- -- -- -- -- -- --- -I

HORIUZONTALE I 1000oC I 100.00 I 1.96 1 1096 1
I (99*74) I (99.69) I (40059) I (28.355 I

S--------------.--.....--- . .... ------------
* FLACHE I 100.00 I 100.00 1 51.31 I 26o97 I

I (99.91) I (99.56) 1 (67.81) I (37.00) I

OIAGONALE I 100.00 I 97.93 I 100.00 1 51941 I
I (99.96) 1 (99.38) I (p5.16) 1 (58.31) r

- --- I. .. . -I----------------------- --.. ...-

VERTIKALE I 100.00 I 100.00 I 1.96 1 100.00 I
r I (99074) 1 (99.68) I (24e2) I (97.851 I

KURVE I 100.00 I 100.00 I 57.81 I 46.18 I
( I (99.84) I (99*43) I (88.81 I (6409w) I
E - - -.-.-.--------- I ....... -....... I---- -I
C KOCHELSEE I 99.96 I 100.00 I 59.5 I 45.57 I

I (99.71) I (98.86) I (77.48) I (59.03) I
I ----------------------------------- I

Figure 5.13: Maxima of mean M in clean and noisy image
(in brackets), using maximum noise factor of 4.
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From all thepe results we can conclude

- thresholds have great importance;
- operators of Rosenfeld and Robers are superior;
- the simpler operators depend strongly on the
direction of structures in the image.

We also found that with increasing noise the simpler
algorithms improve: this is caused by giving correctly
identified edges a higher weight in equation (5.22) than
wrongly identified ones. With noise more correct edges
are found, but also more incorrect ones. The better edge
operators identify all edges with and without noise, but
with noise they also produce wrong edges.

Computing times for the 4 investigated edge opera-
tors compare as follows:

horizontal
Rosenfeld Roberts Laplace difference

3.75 2.27 2.15 1

Since ROSENFELD and ROBERTS are practically equivalent
in their overall performance it can be concluded that the
method of ROBERTS is the most appropriate due to more
modest computing requirements.

5.5 OTHER PRE-PROCESSING FUNTIONS

Numerous other techniques must be used for pre-processing
prior to pattern analysis. The standard one are being used such
as

- contrast manipulation;
- principal component transformation;
- ratioing of 2 images;
- generation of vector length images;
- clustering technique using principal component transform.

In addition a specific technique was developed to enhance
features (areas) in a specific section of the image.

From external sources the approximate size and location
of a feature is known. In the identified image area a histo-
gram is produced in each image channel. Since the information
on the feature is approximate only, the histogram will contain
pixels not belonging to the feature.

To suppress the effect of those pixels that do not belong
to the feature, one now selects a portion [A,B] of the histo-
gram acc. to figure 5.14 so that a certain percentage of the
pixels is within [A,B].
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LI

I. I '~I I
A B

Figure 5.14: Range [A,B] contains 80 % of all values of
the histogram.

Let us now denote with UGk, k = 1, .. n the lower
boundary of gray values (a) an OGk, k 1, ... n the
upper one. k is the index for the channel.

We set

n
MINP = fl UGk  (5.23)

k-l

MAXP = I OGk  (5.24)
k=l

and obtain the transformation

(n (k)~~~Ti- n B1 255 M __I (5.25)
Tij =Bij -MINP)* MAXP-MINP

(k)for all image points Bij



channel*.4 channel

channel- 6 channel

Figure 5.15(a)-(d): Four channels of a section of an
original LANDSAT-image.
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This transformation causes the image points with gray
values similar to those of the feature used for computing
MINP, MAXP to fall in the gray value range (0,255). All other
points will be outside that range (either 0 or 255). This
procedure works well with large areas such as lakes,forests,
etc.. With linear features (roads) one has to transform with
another, large object and then consider the 0 or 255 gray
values.

Figure 5.15 shows 4 original LANDSAT-channels, 5.16 a
vector length image, 5.17 the two first principal components
PC1, PC2 and 5.18 a compressed image acc. to equation (5.25).
For this river Mur was used to compute equations (5.23),
(5.24) and this causes the free-way to fall into gray value
255.

.. -

Figure 5.16: Vector length image of scene in figure 5.15.
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Figure 5.17: Two first principal
components PC1 (a),
PC2(b) of scene of
figure 5.15.
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" "- -I-- .

Figure 5.18: Compressed image using equ. (5.25) for water
and the scene of figure 5.15.



~-81-

6. RECOGNITON PROCEDURES

Recognition in our special case is concerned only with
separate objects. These are objects which appear in a map
and have either a uniform greyscale or a uniform texture.
Images with objects of uniform texture can be transformed
into images ofuniform greyscale by one of the methods e.g.
described by WESZKA (l79-) where the resulting grey values
are texture measures of a local environment. So we can con-
centrate on features in images of uniform grey-scale.

A second restriction to general recognition procedures
comes from the fact that we have already a lot of informati.n
from the map concerning the object: we know the approximate
location of-the object, we know its shape, possible the range
of grey values. It is therefore meaningful to start with a
binary matrix of the shape of the object to use it as a mask
to compare the appropriate grey values with the predicted
value from the data bank or from other calculations on the
image. The result of the comparison is then another binary
matrix called " pattern ". These parameters of the first
step of the recognition process are also shown in- figure 2.7.

In a second step one has to decide whether the pattern
found in step 1 represents the object or not. Here it is
called VERIFICATION. It computes a measure of similarity bet-
ween object and pattern. An object is denoted as rejected
(not recognized) when the verification measure is below some
accept treshold value.

Four methods for centering the map feature correctly
over the image have been studied (see figure 2.7). Their prin-
ciples of operation and implementations are described in the
following chapters, together with the verification functions
employed. These chapters are preceded by definitions of cor-
relation. functions, which are used in several of the proce-
dures. Corresponding practical experiences, results and tests
are presented in a separate chapter 8 so that the current
chapter is merely theoretical.

6.1 CORRELATION FUNCTIONS WITH BINARY MATRICES

From the registration of an image with another image we
know many correlation functions (DOWMAN, 1977;, BARNEA et al.,
1972; ANUTA, 1970). Correlation functions with binary matr±ces
are treated here because the formulas restrict themselves to
expressions which use only standard statistical measures and
masked image areas. This advantage has two effects: the number
of accesses to the image elements can be minimized and standard
procedures for statistical measures can be used.

Our formulas are derived from two different functions:
The coefficient of correlation (KREYSZIG, 1973) and the cross-
correlation (BARNEA et al., 1972).
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The following statistical standard measures are used in
our formulas (binary matrix and image S should have the same
window size):

(6.1) F(M) =E MUi,j).......surface of binary matrix M
i..j

(6.2) F(S) = n 4 m ..........surface of an image window S of n1
columns and mn rove

(6.3) C(S) = (Z: S(i,j))/F(S) .... mean value of image window S
i,j

(6.4) C(M) = F (M)/F(S) ... mean value of binary matrix

(6.5) CM(S) =[F (S Uhi)46M(i J) )] /F(MW ... mean of image S over the
, j binary mask M

(6.6) e(S.) =[I(S(i,i)-ev(s)) 2J /(F(S)-l) ... variance of image S

6.1.1 Derivation of the coefficient of correlation

n m

1 (s(i,j) -&S)) * (Mi,j)

Coco = =

Building the product and splitting the sums simplifies the
RIuierator rN:

n m ni m ni m

Using equations (6.1),(6.3),(6.4) and (6.5) from above rN becomes

rN=- F(M) -t6(S)-C(S)F(M)-F (M)/'F(S)* F(S)C(S)+C(S)M-Lj F(S)

It follows directly

and tq-FMt S F()6()- M 6S F() S
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With equ. (6.6) and knowing that M2 (i,j)=M(ij) the square rD2
of the denominator rD becomes

rD 2= (F (S)-_1) *52 (S), M(iJ)- F(S) 2(MJ

and from (6.1) and (6.4) it derives

rD 2 = [F (S)1) _ & e2(S) * [F (M) - F (S) *F 2 (M) /F 2 (S)]
and

r2= [F (S) _j] ar(2 t(/ (S) 4Fs~()J

Hence the quotient of rN and rD results to

(6.7) coco = em (S) - .(S) "V1 F(.) F(S)
T(€S) [F (S) -1] ,[F(S) -FMJ

In an analogous way the formula for the cross-correlation derives
from

.Z M(ij)*S(ij)

cross= L,

and results in

(6.8) cross (S=M (S) ()F( )

6.1 2 CQgelation between two binary matrices M , M2

In the case of two binary matrices M and M2 only surfaces
F(M) and F(S) are of interest. M is one ok the two matrices or
their product M.M , and F(S) represents the minimal window
size which comviisis M and M2. Pixels outside of the window
of one of the binary nUtrices are per definition set to 0.
Since the derivation of the formulas is trivial only the re-
sults are presented here.



-84-

F (S)OF (M1 .M 2 ) - F (M1 )*F (M2 )

(6.9) bicoco = 1

Binary cross-correlation:
F(M. M2 )

(6.10) bicross=

F(M1 )* F(M2 )

For comparison purposes formulas (6.7) and (6.9) of the
coefficient of correlation are used as a-bsolute values. All
correlation measures which appear in the following chapters
are given in percent, That means that the values are normalized
between 0 and 100, where 0 stands for no correlation and 100
for the best.

6.2 COMPARING THE REAL WITH A SYNTHETIC IMAGE

It is obvious that the binary image constructed from the
map feature is a mask or a template or a synthetic image. This
could be shifted over the window to find maximum correspondence
between the window pixels and the template. This follows the
sequential similarity detection algorithm of BARREA and SILVERMAN
(1972) which is normally applied to correlating two images.
However, the method is typically suited to define a geometric
distortion vector; it is not equally suitable to define the shape
of a feature in the image.

One of the possible: implementations of this shift algorithmis shown in figure 6.1.

It starts at the position of the binary matrix, which is
estimated from the map. Correlation measures max@ are calculated
for levels of equal distance d from the original positic: It
continues for ascending distances d until either no better
correlation is found or a maximum distance Dmax is reached. The
function binary matrix (pos) delivers the binary matrix shifted
to position "pos". The condition in line 10 of figure 6.1 defines
all positions of fixed distance d from the original "position"
in the 8-neighbourhood (figure 6.2). The position "positmax" of
the best match is used to shift the binary matrix to the resulting
pattern.

goo
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(1) procedure SHIFT (image, binary matrix, pattern);
(2) begin
(3) max0 :=0;
(4) maxi : 100* Abs(coco (image , binary matrix));
(5) d:= 1;
(6) positmax:= position(binary matrix);
(7) while maxl> max0 or djCDmax do
(8) begin
(9) max0:= maxi;

(10) for all pos with (max(x(pos-position),y(pos-position))=d)do
(11) begin
(12) pattern:= binary to matrix (tpos)
(13) c:=1009 Abs(coco (image,pattern));-
(14) if c> maxi then
(15) begin
(16) maxl:=c;
(17) positmax:= pos;
(18) end;
(19) end,-
(20) d:= d+1;
(21) end,-
(22) pattern:= binary matrix(positmax);
(23) end.

Figure 6.1: Recognition procedure SHIFT.

22 22 2

2 1 112

- 2 1 0 1 2 - - - -

21 11 2

2 222 2

Figure 6.2: Distances in the 8-neighbourhood.
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6.3 REGION DETECTION BY THRESHOLDING

The principle of the SHIFT-method was to locate
the real position of the object in the image by corre-
lating the binary mask and the image at different hori-
zontal and vertical positions. The shape of the object
never changed, so that local distortions could not be de-
tected. We tested another method of region recognition,
which starts with a rudimentary binary feature and assem -
les pixels belonging to a region R according to the
corresponding grey values in the picture.

The simplest method for assembling the pixels x be-
longing to a region R is by thresholding. Supposing that
we start with the mask M from the map data bank projected
on the image we calculate the following parameters before
thresholding the image:

- a lower and an upper threshold value and
- a starting mask S containing all pixels which

are possible candiates to belong to region R.

If we assume a dislocation of any pixel with a maximum of D
pixel diameters the starting mask S can be computed from M
by adding a band of D pixels around the feature. Then for all
pixels of R, S(i,j) = 1 under that assumption (see fig.6.3b).

To: choose the threshold values we tested various me-
thods with different complexity. The simplest and fastest
one is to take prefixed values. That is possible if the un-
derlying image has been preprocessed so that all.pixels be-
longing to a certain object type have a known range, which
is then used as threshold interval CIPU, IPO]

Sometimes we know only that the pixels of the object
accumulate at one end of the grey scale. In this case a hi-
stogram can be used to find the other value. The histogram
shall be taken from an image region which contains the whole
object. This could be a rectangular region (S-window in
figure 6.3a) D pixels greater in each axis direction than the
original window ofthe object or the starting mask S as
described above. Since the real surface of the object is known
from our data bank the threshold value is defined by the condi-
tion that the number of grey values between the threshold pi-
xels equals the surface content of the object. In this way
procedure ADAHIS works in figure 6.3a. Factor p depends
upon the dislocation D and the shape of the object. It is di-
rectly proportional to D and to the ratio F(S)/V(M) where M
stands for the binary matrix representing the object and S
for the starting mask. F(x) denotes the surface content of
the respective parameter x.

If no information of the grey values of an object can
be predicted, standard statistical measures produce sometimes
acceptable results. We calculate the mean value MV
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(1) procedure THRESH (image, M,S)
(2) begin
(3) S-window:= Window (M) +(-D, -D,+2D, +2D)
(4) STARTINGMASK (binmat,S-Window, D,S);
(5) HISTO (image, S, S-Window):
(6) ADAHIS (p4P(M), IPU, IPO);
(7) for all (i,J) E S-Window do
(8) if S(i,j)= 1&"(IPU -image(i,j)'IPO) then S(i,j):=.-,
(9) end.

Figure 6.3a: Recognition procedure THRESH.

(1) procedure STARTINGMASK(binmat, window.D,mask)
(2) begin
(3) for all (i,j)( window do
(4) begin
(5) if binmatCi,J)=l then mask (i,J):= 1 else
(6) begin
(7) d:=l
(8) sum:=
(9) while sum=0 & d-D do
(10) begin
(11) k:=d;
(12) 1:=O;
(13) while k 0 & sum = O do
(14) begin
(15) sum: =sum~binmat Ci+k, k+l) +

binmat (i-1, j+k) +
binmat (i-k, j-l) +
binmat (i+1, j-k);(16) k:=k-l;

(17) l:=1+1;
(18) end
(19) d:-d+l-
(20) end;
(21) if sum-- then mask(i,j):=0 else mask(i,j):=1:
(22) end
(23) end
(24) end.

Figure 6.3 b: Procedure STARTINGMASK

and the standard deviation SD of the grey values in a certain
region. Then the threshold values are IPU:=MV-SD and
IPO:-MV+SD respectively. The underlying region can be the project-
ed object matrix M or the starting mask S or a region smaller
than M or an image window containing M or only a portion o M.

After these preparations the proper thresholding is per-
formed. Pixels from S are eliminated if the corresponding grey
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value does not fall into the threshold interval (see lines
7 and 8 of figure 6.3a).

The disadvantage of the method THRESH is, that the re-
sulting binary mask S is not necessarily a connected set. An
advantage is the parallel operation of the algorithm.

6.4 ADAPTING THE HISTOGRAM

Another method which takes into account the disadvantage
of thresholding starts with the contour of the object as gi-
ven in the map. A histogram of the image over the binary
region will-reveal that pixels are included that should be
eliminated. On the other hand, pixels in the remainder of the
image are not part of the approximate binary projection, of
the object, but are adjacent to it and should be added, because
their grey values are very close to that of the feature. A
search along the boundary of the feature will thus permit
to connect the original contour, using the histogram to decide
which pixels to reject and which ones to accept. This process
can be repeated iteratively until either no corrections to the
contour are done in the last step or a maximum iteration count
is reached.

Figure 6.4 shows the procedure in more detail. MH is
there a binary matrix which guarantees that changing the value

(1) procedure ADAPT (image, M, binadapt, maxiter)(2) begin
(3) S-Window:= Window(M)+(-maxiter,--mxiter, +2 maxiter, +2 maxiter)
(4) iter:= 1;
(5) alt:=---; neu:= 0/"
(6) binadapt:= M;
(7) while iter _< maxiter & neu >alt do
(8) begin
(9) alt:= neu;

(10) MH:= (1) - binadapt;
(11) HISTO (image, binadapt, S-Window);
(12) ADAHIS (p4F(M), IPU, IPO),
(13) for all pixel eS-Window do
(14) if MH (ixel) =0 v (pixel . border (ME) & (IPUgimage (pixel)s IPO))

then binadapt (pixel) :=0
(15) else binadapt (pixel) := 1;
(16) MH:=(I)- binadapt;
(17) for all pixel ES-Window do
(18) i f MH (pixel) =0 v (pixel e border (W-)& not (IPUAiuge (pixel)-IPO))

then binadapt (pixe4:= 0
(19) else binadapt (pixel):= 1;
(20) iter:= iter+1;
(21) neu:= F(Ibinadapt - MI ),
(22) end
(23) end

Figure 6.4: Recognition procedure ADAPT.
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of a pixel from 1 to 0 does not influence the property
"pixelC border (MH)" during one iteration step. Lines (10)
and (16) assign the binary complement of binadapt to MH.
The selection of threshold values IPU and IPO in lines (11)
and (12) works analogous to procedure THRESH. Condition
"neu> alt" in line (7) and the calculation of "neu" in
line (21) to be the surface content of the absolute binary
difference between the original M and the adapted matrix
"binadapt" express the termination of the loop if no more F
changes have accurred and "neu' is empty.

An advantage of this procedure lies in the fact that
all changes of the binary matrix preserve its connectivity.
The idea for this method derives from a skeletonizing or
shrinking algorithm of ROSENFELD (1970). "ADAPT,, combines
the connectivity-preserving deletion process with an addi-
tional threshold condition on the image. ROSENFELD did
show that the binary property of his algorithm preserves
connectivity. Since we use only the deletable pixels from
ROSENFELD his result must be a subset of ours. Hence our V
binary matrix has the same property.

A disadvantage of ADAPT is its relatively high processing
time compared with thresholding. The algorithm has to inspect
for each pixel a 3 x 3 pixel neighborship of the binary
matrix to test for a border point (lines (14) and (18)) and
in some cases the grey value in the image. This is done
twice (for adding pixels and deleting pixels) with an addit-
ional histogram building at each iteration. The histogramming
is not absolutely necessary at each iteration but it responds
better to the fact that before adapting, a great amount of
erroneous pixels affect the histogram and the choice of the
threshold values IPU and IPO. In the version of figure 6.4
these are updated at each step in order to get the most
homogeneous region in the image.

From these considerations follows that ADAPT should be
used for the recognition of objects with small deviations
from the expected location in the image to get a registra-
tion of greater precision than with other methods like
threshold.

6.5 LINE DETECTION

Lines in satellite images appear either as borderlines
between two distnct regions or as linear features like
rivers, roads etc. Since borderlines are produced implicitly
when their adjacent regions are recognized, their recognition
is not of special interest for us. On the other hand they
do not appear in our map data bank asseparated objects. However,
linear features do appear as skeletons in the map because
they are considered to be very small regions.

Several procedures which detect lines in digital images
are proposed in the literature. In principle there are 3 ways
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to find lines from which the course is known approximately:

1) Shifting and rotating a binary mask over the image
and determining the correct position by the maximum
of a correlation function like method SHIFT in chapter
6.2. HACK (1975) and SWEDLOW (1978) correlated two
binary edges images.

2) Thinning a binary rogion produced from the map projec-
ttonof the skeleton followed by a thickening like the
production of the starting mask in method THRESH. A
thinning algorithm was proposed by ROSENFELD and DAVIS
(1975). The thinning algorithm eliminates in our case
the pixels according to their grey values like pro-
cedure ADAPT.

3) Following the lines sequentially.

The first two possibilities can be performed by procedures
THRESH and ADAPT. We therefore concentrate in the following
on sequential line following.

Literature (VANDERBRUG, 1973; DAVIS, 1973; HOLDERMANN, 19717
TENENBAUM, 1978) of sequential line following algorithms
shows a great similarity with general problem solving algo-
rithms in Artificial Intelligence (NILSSON, 1971: VEILLON,
1974). The algorithm in figure 6.5 represents a general line
following algorithm as a result of adapting the general pro-
blem solving algorithm of VEILLON (1974) to the special pro-
blem of finding lines. All sequential line following algo-
rithms that we found in the literature are expressable by
this general procedure simply be selection of special para-
meters.

The algorithm LISU in figure 6.5 works on a general search
space X. In our case this would be either a window of pixels
containing the line or the set of pixels defined by the start-
ing mask S as used in procedure THRESH (chapter 6.3). The search
starts at pixel x in the search space X. This pixel must be
determined approximately by the map projection of the line.
Important parameters are the cost function c(x,y) defined on
pairs x,y of neighbour pixels and the heuristic function h (x).
They essentially direct the search to a coal pixel gC X for
which "end (g)" is true. The heuristic h'(x) estimates the
sum of costs for the optimal path from the argument pixel x to
the goal.

The state of the search is described by a set S of pixels
from X and the approprate values I and pointers "last". After
each step, ((x) contains the minimal sum of costs for the
optimal path from x to x. The path (xoxl...x k x) is defined
recursively by "lass":

last (x) = xk and last (xi) = xi_ 1 for i = 1, ...,k

and the set S contains all endpoints of minimal paths or in
other words, all candidate pixels to continue to find the end
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(1) procedure LISU (x ,X, end, c,h',xn, last)
(2) begin 0

(3) x_:= x0;
(4) last (x ):= nil;
(5) for allox eX do (?(x) :=oo(6y" W(xo)-. 0_ -
(7) S:-f Xo1 ;
(8) while ,7end (xn) & S 0 0 do
(9) begin

(10) eliminate x from S;
(11) fralx 1 I(n)-Pl(last(xn)) )do
(12) begin
(13) Yf:= (P(x ) + c (xn, X)
(14) if <(P x) then
(15) begin(16) W(x -= en;

(17) enter x in S;
(18) last (x):= xn
(19) end
(20) end
(21) m:= o
(22) for all x e S do
(23) if ((x) + h' (x) < m then
(24) begin
(25) m:= C(x)+ h' (x)
(26) Xn:= x
(27) end
(28) end
(29) end

Figure 6.5: A general line following algorithm.

pixel. These invariance conditions hold also for the goal state.
Therefore the successfull result is defined by the pointer
chain "last", starting at the goal pixel xn and the minimal
cost If(xn) at that pixel. Condition S=0 can be true only in
the case of an error in the definition of X or if for no pixel
x of X end (x) takes the value "true".

The importance of the heuristic lies in its tendency to
prefer paths which tend towards the goal. Since O(x) contains
the cost sum for the path from x to x and h' (x) estimates the
cost sum for the rest of the pat from x to a goal pixel,
yP (x)+h' (x) represents in line (23) an estimate for the path
passing through x. The pixel xn of S where the search shall
continue at the next step is selected in lines (22) until (27)
to be on the path for which minimal total costs are expected.

This informal description of the algorithm is based on the
proof which can be found in VEILLON (1974).
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6.5.1 Cost and heuristic function for some special methods

One method often mentioned in the literature is the
"heuristic search" of a line. Cost and heuristic functions
c(x,y), h'(x) are determined according to gray values g(x)
and g(y). MARTELLI (see VANDERBRUG, 1973) uses as search
space X the set of all possible edges on the image B. The
set of neighbors on X is defined as follows:

If a,b,c,d,e and f denote points of image B in one
of the following constellations,

c d

a b or fac

f e ebd

then the neighbors of edge (a,b) are enumerated in:

F'((ab)) := (a,c), (a,f), (b,d), (be), (c,d), (e,f)}

The cost function is calculated

c((a,b), (xy)):= max 0, 2M-(g(a)+g(x))+ (g(b)+ g(y))}

with M to be the contrast g(p)-g(q)of an optimal edge (p,q).
The search starts with an edge x = (ll,s ), (1,s 0l)) behind
column so in the first line of tse picture and ends when

end ((a,b),(x,y)):- (a=last line)&(x=last line)

becomes true.

The algorithm uses further the following heuristic:

0 if line (a) xrax{line (x)j(xy)CSl -3

The heuristic prevents the search to follow paths from
end edges which lie 3 lines before the highest line number
which had ever been developed and stored in set S during the
preceding search. In effect backtracking is reduced and the
search is forced towards the goal, the last line.

The Look-Ahead algorithms and the algorithm of CHERNIAVSKY
(VANDERBRUG, 1973) use a similar cost function and estimate
the heuristic h'(x) in some neighbourhood U(x).

An other efficient group of search methods are summarized
under the notion "Directed Search". The search is there directed
by external informations, which cannot be calculated directly on
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the image and come therefore from the outside. They determine
the heuristic h' (x) and influence via h' the flow of the
search. A special form of the "Directed Search" is called
"Planning" (KELLY, 1971; DAVIS, 1973). It assumes that inter-
mediate goals are known from preceding steps and uses them
through the heuristic to follow the line passing through.

HARLOW (in DAVIS, 1973) describes an algorithm, which
gets its information directing the search from a description.
of the scene. This early approach could be regarded very near
to ours in which a map knowledge shall help to find lines in
satellite images.

A method proposed by MONTANARI (VANDERBRUG, 1973), which
falls into the category of "Dynamic Progranming", is in
reality a simplification of the general algorithm by setting
the heuristic h' equal to zero for all arguments. Further
restrictions arise for the set of neighbors allowing only
neighbors in the original sense for which certain conditions
for their grey values are fulfilled. The search space is here
built by the image pixels B itself.

A similarity between the "Bidirectional Search" (VANDER-
BRUG, 1973) and the schemof the general sequential line
following algorithm is not obvious. The search starts there
simultaneously from start and end point of the line. For
the starting point a set S of alternatives is created and
for the end point a set T for paths running into the goal.
A difficulty arises for thecomputation of the "end"-function
which has the form:

end(x) <=> xC Sn T

This derives from the fact that the function must be calcu-
lated at each step and requires an inspection of every
element of S and T.

HOLDERMANN proposed in 1971 a straightforward method.
His algorithm selects edges in the search space giving them
two values: a weight and a direction. The neighbourhood fl(x)
has the form of a sector centered in x of several pixel
radius. Its main direction is the same as the direction of
edge x. The characteristics of the cost function must be
selected so that

1) the costs for a chosen alternative are always lower
than for other alternatives,

2) a selected edge corresponds best to its predecessor
in weight and direction and

3) if there is no direct successor, adjoining sectors
are selected.

The heuristic has no importance in this approach.
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6.5.2 Interrelationship between cost and heuristic functions

VEILLON (1974) enumerates 2 conditions for costs c and
heuristic hl:

(A) c(x,y) > 0 for all xy of X and x e (y)

(B) 0 -S h I (x) iS min {- c (x., xi+,)jIX__Xl & end (xn) & x+ 11EFlx±) , i=1, n-1

In the case of line detection the costs c depend essen-
tially on the grey values of the corresponding pixels. If
we assume that the image has been preprocessed so that pixels
on the line have high grey values, then the desired path has the
property that the sum of grey value differences to the maximum

- is minimal. This leads to the conclusion, that c(x,y) depends
only on the grey value g(y). We further restricted the functional
class of c to the form

c(x,y) = cg(g(y)) = (a +btg(y))n with a,b,nER and n>0.

The choice of c was a result of extensive tests and the con-
sideration that pixels near the optimal grey value should
yield small costs while grey values far away from the optimal
one should be considered only in the worst case. Parameters-a,
b and n are determined by 3 conditions which can be derivedfrom our data base knowledge if we assume that h' (x) measures
the Euclidean distance from the goal.
1. If B is the highest grey value of the search space X

then we set

(El) cg(B + 1) = 0.
2. Since pixels of the line accumulate at R, we choose a

range CC,B] of grey values in which all line pixels
should lie. Let H(g) denote the histogram of the grey
values g in the search space X. Then
B

H(g) = L can be used to determine C if L is the

g=C
length of the line in units of pixels. To guarantee
general condition (B), we demand that cg (x) for xeEC.BJ
should be 1 in the mean and therefore:

B

EH (g) * cg (g)
(B2) Q=c=1

L

3. Pixels outside of the line should get high costs. We
set the mean costs for such pixels x with g(x)C[A,C -
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equal to the total sum L over all goal pixels.
"A" stands here for the minimal grey value. That means:

j H(g) V cg(g)

(B3) c-i =L.

H(g)

From these 3 condidtions parameters a,b and n are derived de-
livering a consistent pair of costs and heuristics (cg,h').

6.5.3 Representation of the result of line following

The result of procedure LISU consists in a pointer chain
"last" from a goal pixel xn back to the starting point,. The
transformation in a binary matrix "binline" is done in lines
(8) to (13) of procedure LINDET (figure 6.6). Procedure
COSTPARAMETER determines the values of a, b and n with the

(1) procedure LINDET (image, mapline, start, goal, binline);
(2) begin
(3) S-Window:= Window (mapline)+(-D,-D,+2D,+2D);
(4) STARTINGMASK (mapline, S-Window, D, Smask)
(5) HISTO (image, Smask, S-Window)
(6) COSTPARAMETER (a, b, n);
(7) LISU (start, Smask, end, c, h', xn, last);
(8) for all x e S-Window do binline (x):= 0:
(9) while xn # nil do

(10) begin
(11) binline (x ) := 1:
(12) xn:= last Xn)
(13) end
(14) end.

Figure 6.6: Filling a binary matrix "binline" with pixels
of a line.

aid of the histogram built in line (5) according to conditions
(BI), (B2) and (B3) (chapter 6.5.2). Function end (x) in
procedure LISU (figure 6.5) is defined by

end(x):= (h' (x) = 0)

and heuristic h' of a pixel x = (col, row) is computed as
follows
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h'(x):= min {(col-gc) 2+(row-gr)2 (gc,gr) 6 goal .

The cost function c has the form as described in chapter
6.5.2.

6.5.4 Performance of sequential line detection

Sequential line detection has its origin in a general
problem solving algorithm, which searches in a predefined
search space of possible solutions for the best under a cer-
tain valuation criterion. How fast algorithm finds the
result depends essentially on the choice of heurictic h'
or as in our case - of the deduced cost function. If the per-
fect heuristic h were known, that is if condition (B) in chap-
ter 6.5.2 takes equality on the right side, then the algorithm
would find the optimal solution (xo 1x ... x) exactly in n steps.

A disadvantage of these algorithms is the enormous
computational effort if the line does not lie in the expected
region. Then almost the whole search space must be inspected.
It is therefore of great interest to keep the search space X
as small as possible.

6-.6 VERIFICATION OF FEATURES

Features or objects appearing in maps and images are
determined by several characteristics (form, uniform grey
value). In step 1 of the recognition process some of them were
used to extract a feature (binary matrix) from the image.
Verification is then the second step which tests if other charac-
teristics describing the object have been violated in step 1
or not.

Since three of our recognition procedures (THRESH,ADAPT,
LINDET) are adapting the form of the object to yield the best
attainable uniform grey scale distribution, the resulting
shape of the feature must be compared to the original one
from the map. Figure 6.7 shows in lines (7) until (10) the
general method of operation. Measures of the object and the
pattern are computed in the appropriate coordinate system
in order to construct a linear transformation function T
which superimposes the transformed object over the pattern.
Then the shape of the two features can be compared and measured
by a correlation function.

Some of these measures, their computation and the recon-
struction of a linear transformation will be described in
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chapter 6.6.1. Correlation functions to measure similarity
of the two features are presented in chapter 6.6.2.

(1) procedure VERIFICATION (object, image, pattern);
(2) begin
(3) if search method (object)= 1 then
(4) VERIFICATION:= coco(image, pattern)
(5) else
(6) begin
(7) objectmeasures:= measures (object);
(8) featuremeasures := measures (pattern);
(9) BESTOVERLAY (objectmeasures, featuremeasures, T);
(10) VERIFICATION:= correlation (T (object) ,pattern):
(11) end;
(12) ends

Figure 6.7: Computation of a measure for verification.

The first recognition procedure SHIFT does not vary
the shape of the feature. It is therefore meaningless to
compare the two (in that case identical) shapes. We use
either the correlation between grey values of the picture
and the binary pattern that has already been calculated in
procedure SHIFT or we correlate the pattern with another
channel of the multiple (multispectral) image or a pre-
processed version of it.

6.6.1 Some measures describing patterns, their computation
and application.

(a) Translation and Center of Gravity

The measures or quantities discussed here have the
purpose to establish a linear transformation

from the map coordinate system to the image system. These
measures are a derived quantity, obtained from possibly
erroneous pixels that are defined to belong to a feature.
Errors in the pixels should have a minimal effect on the
derived measure.

The simplest measure we use is the center of aravitv
of a pattern. Its computation for a closed polygon P
employes the formula

n n

SX(P) := ) i/ (Xi+lYi -XiYi+l)i=1.(xixi+1) xijj - X 1z=1

Sy(P) : (Yi+Yi+) (x Y - xiYi+1 / (-

Jc3
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where (xi, yj), i = 1, ...n are the points of the polygon P,
and (Xn+i , Yn+l) is identical to (xl0 yl).

If a region R is described by two polygons PI and P2.
P1 enclosed in P2 (see figure 6.8), then the

Figure 6.8: The shape of region R containing an island
is described by the polygon P1 and P2.

center of gravity s(R) of R is computed following

S(P 2 )*F(P 2 ) - S(PI)XF(P1 )

F(P2 ) - F (P1)

with F(P1), F(P2) denote the areas of polygons P1 and P2 .
respectively.

The center of gravity of a binary matrix M computes
as follows

S(M) := ( z M (2)) F (M)

eWindow (M)

where F(M) is here the number of pixels in the pattern
(M(x) = 1).

With the two centers of gravity, namely of region R in
the mapkQ(), and of pattern M in the image, ALM), the shift
vector b of the original transformation TO

can be corrected to be

.2 g(M) -A .S(R)

The new transformation TN can be formulated as follows

T N (A) : = ('-b(R) ) +&(M) .
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(b) Rotation and scale with lines.

Other measures can be calculated from lines.Two refe-
rence points E, in image coordinates and F' and Q' in
map coordinates are used to correct the original transforma-
tion

to o (20 = Ao . 2i + l
to

with

AN S. Co? -siny .A
= s "inr cos V, o

The correction matrice D can be calculated from

k = -TN IN (2') = .-(-T(') - -TO CZ
Having the new AN " N computes as for translation:

-k -AN - P'

6.6.2 Measures of correlation between object and pattern

The measures mentioned 1ere are used to determine how
well the shape of the (best-)transformed object corresponds
to the shape of the pattern in the image. We assume that
the object is transformed linearly so that the registration
of object and pattern is optimal.

Then the polygonal representation is transformed to the
raster of the pattern. A measure can be obtained using the
binary coefficient of correlation from equ.(6.9), "bicoco",
or the binary cross-correlation from equ. (6.10), "bicross",
of the two binary matrices (see chapter 6.1).

Another method we used earlier was based on the number
"differ" of pixels which do not appear in both matrices M
and M2:

F (1 M1 - M2 1)
differ:=

F ( M1

Tests showed that this approach is very sensitive to the
total surface of M . The best results were obtained from the
cross-correlation "bicross" which is simple to calculate
and less dependent from the total area of a pattern or object.
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7, CONTROL POINTS AND RECTIFICATION

The original problem of registering a map with the cor-
responding satellite image was partitioned in our approach
to search first for registration of separate identifiable
objects. From each such object we extract one or more pairs
of corresponding points in map and image, which we call
control points. During the process of recognizing objects in
the image these control points are collected. If the set of
control points covers the overlay region with sufficient den-
sity and an even distribution, it is used to geometrically
transform the image to the map coordinate system.

Procedure CONTROLP (fig. 7.1) summarizes the selection
of control points from an identified object and their collec-
tion in a file. Regions and lines are handled separately be-
cause of the difference in structure. From a region we ex-
tract one controlpoint, the center of gravity. The degenerated
case of a circular region demonstrates why we restrict ourselves
to only one point. From lines we extract at least two points.

(1) procedure CMMULP (object, pattern, cntrolpoints)
(2) begin
(3) if search method (object)= 4 then
(4) begin

$ Lines 0;
(5) oontrolpoints: =ctrolpoints+ (i (object) ' (pattern))

+ (I. 2 (object) , 2 (pattern))
(6) end else
(7) begin

0 regios 0;
(8) cntrolpoints: ==ntrolpoints+ (I (object) , _q (pattern));
(9) end
(10) end.

Figure 7.1: Definition of control points

We could use the endpoints, but they are affected with errors
because lines are often segments of longer lines for which
the starting point in the image is not exactly defined. To
eliminate this disadvantage and source of errors the line is
subdivided into three segments of equal length. The intersec-
tion points 11, 12 of adjacent segments are then used as con-
trol points.

The registration process REGISTER is followed by a geometric
transformation RECTIFY (figure 7.2) of the image into the coor-
dinate system of the map. The transformation is done in a stand-
ard procedure with the aid of the control points. These are used
to define a regular grid of anchor points in the rectified
and in the distorted image. The grid is stored as a matrix of
point coordinates in the original image. Rectification is done by
bi-linear resampling within each grid mesh as defined by the anchor
points. While the geometric location of the center of a new
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(1) procedure RECTIFY (old image, controlpoints, new image)
(2) begin
(3) determine rectangular transformation grid (controlpoints);
(4) for all rectangles of grid do
(5) begin
(6) for all pixel of rectangle do
(7) begin
(8) interpolate position(pixel) linearly in old inage;
(9) new image(pixel):= cldimage (positior(pixel));

(10) end
(11) end
(12) end

Figure 7.2: Geometrical rectification of an image

pixel in the distorted image is computed by bi-linear trans-
formation, its grey value is assigned as that of the next neigh-

bour. The entire rectification is a well-documented standard
routine (e.g. KONECNY, 1975) and was programmed in our case
by WIESEL (1977).
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8. RESULTS AND EXPERIENCES

8.1 INTRODUCTION

Numerical results and experiences were obtained using

3 different images:

(a) A synthetic image (denoted MERK).

(b) A section of a multispectral Landsat image of an area
in Southern Germany with lakes (denoted WALCH).

(c) A section of a Landsat image in Southern Austria of an
urban area (denoted GRAZ).

Tests and results will be described in this chapter;
they will demonstrate in some detail the basic concept of
ARSIM. In each of the three test images several specific
aspects of the ARSIM concept have been evaluated.

Experiments with the synthetic image MERK serve to
prove the basic validity of the procedures, using a well
controlled ideal data set.

Test area WALCH was used originally for understanding
the problem of feature recognition in satellite images. It
served to develop the rudimentary algorithms and to select
methods which promised some success.

Test area GRAZ finally had the function of verifying
the developed methods with real data. This is the material
to permit identification of current limits and needed
improvements in the experimental system. The fundamental
experiences can be summarized as follows:

- ARSIM is a valid concept to automatically merge a map
with an image.

- The task of automatically merging maps and satellite
images is a formidable one. There is no limit to the
number of possible pattern recognition techniques that
can be used.

- Successful feature recognition depends on specific
preprocessing to prepare the feature for a recognition
algorithm. Preprocessing must be turned to both the
image and to the object to be recognized.

- Successful feature recognition also depends on a map
data base of an appropriate organisation and content
such that a relation to images can be established.

- The success of the approach depends on the implementation
of experiences into the selection of preprocessing and
recognition algorithms. A "learning system" is required.

- ARSIM must be organized in a highly modular form so that
many different algorithms can be implemented as new
experiences are gained.
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8.2 EXPERIENCES WITH THE SYNTHETIC IMAGE

The purpose of working with a synthetic image and
related data base is to have control over perturbation
factors. Therefore the results can be more easily analyzed
and the limitations of the concept can be understood.

8.2.1 The synthetic image MERK

Figure 8.1 shows in the form of a printer output the
configuration of the five objects RECHT, DREI, KARO, PARA,
KREIS in the image. Different geometric forms of objects
have been used: RECHT is a rectangle, DREI a triangle, KARO
a quadrangle with a rectangular hole, PARA a long parallelogram
and KREIS is a circle. Pixels of the objects were set to grey
value 0 (black) and the background to 255 (white).

A map data base was created showing the same features
with identical geometry. Figures 8.2 and 8.3 illustrate the
map.

Project funds did not permit us to fully exploit the
possibilities of the synthetic images. Instead of a wide
variety of perturbed versions, we could only test the influence
of grey level noise generating a noisy picture as shown in
figure 8.4.

8.2.2 A projection of the map onto the image

To simulate the geometric conditions from an approximately
rectified satellite image the map data were geometrically
deformed using the following linear transformation (referenced
as projection (8.1) in the following chapters):

T (xy) = -0.035 *x + 1.033*y + 3.500x (8.1)
T (x,y) = 1.058*x + 0.040*y - 5.000

y

Figure 8.5 shows the projection of the five objects into the
image. Table 8.1 enumerates the objects with their surface
in the map and after transformation (8.1) including a
discretization error and the deviation of the center of
gravity from the ideal. These deviations are measured with I.
the Euclidean distance. The assumption is met of a maximum
shift of 10 pixels in each coordinate direction, except for
object DREI which is used to study a more extreme case of
geometric deformation.

Feature Surface Surface Differences in
orig. project. position(pixels)

RECHT 36.1 41.9 5.099
DREI 20.0 24.6 11.700
KARO 48.4 44.6 7.211
PARA 74.1 87.5 4.123
KREIS 48.5 55.8 12.042

Table 8.1: Characteristics of the projection in pixel
units.
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Figure 8.2: Plot of map MERK.
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8.2.3 Results with procedure SHIFT

Procedure SHIFT was applied as discribed in chapter 6.2.
For all objects a position was found of maximum correlation
between the binary map-derived image and the window in MERK.

A section of the matrix containing the positional
correlation measures in percent is shown in ftgure 8.6. The
correlation value grows from 14.2 X at the original position
until 88.6 % at the maximum (the correlation measure was
explained in equ. 6.7). 100 % is not reached because procedure
SHIFT takes into consideration only the shift parameters of
the projection, however, not rotation and scale factors which
cause the deviation of the correlation value from the ideal
value of 100 %.

Procedure SHIFT was applied also to the noisy version of
image MERK. The maximum correlation was practically the same
or even higher in some instances in the noisy image. This canbe explained by the smoothing effect of the noise.

S79.6 85.5 76.5 65.5 52.2

85.8 | 88.6 82.3 67.9 54.2 41.2

77.2 I 82.3 74.1 65.1 51.9 39.3 27.41

57.5 49.3 37.1 25.6 14.8

42.4 34.9 23.8 14.1 5.

28.7 22.7 142 1
19.2 15.419.

Figure 8.6: Correlation measures for object KARO in , and
path of increasing correlation from a starting value to the
maximum.

This noise can compensate for the effect of the rotation error.

Figure 8.7 compares the results from both images with the
aid of error vectors of an overdetermined transformation. The
control points used for the transformation are the centers of
gravity of the features in the map and the shifted features in
the projected version of the map.

To qualify the method a standard deviation for coordinate

errors and point errors (vector lengths) are calculated using:

ano = di/(n-3)

where d are the individual residuals after the transformation,
n is thl number of points; (n-3) is the degree of freedom
(overdetermination) of the transformation.
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C 1 e a n

Feature x y Error vector Length Correl.

Ax Ay[%]
RECHT ( 61.500 61.520) (0.692 , -0.157) 0.709 87.230
DREI ( 58.667 ,183.667) (-0.760 , 0.347) 0.835 72.783
KARO (124.500 124.949) (0.178 , -0.400) 0.437 88.575
PARA (186.500 , 79.500) (-0.887 , 0.404) 0.974 88.969
KREIS (187.000 187.00) (0.777 , -0.194) 0.800 88.765

Stand. deviation ( 1.113 , 0.503) 1.221 85.264

N o i s e

RECET ( 61.500 , 61.500) (0.692 , -0.073) 0.696 87.160
DREI ( 58.667 ,183.667) (-0.760 , 0.220) 0.791 72.855
KARO (124.500 124.949) (0.178 , -0.307) 0.355 88.592
PARA (186.500 , 79.500) (-0.877 , 0.255) 0.923 88.878
KREIS (187.000 187.000) (0.777 , -0.095) 0.782 88.777

Stand. deviation ( 1.113 , 0.333) 1.162 85.252

Figure 8.7: Table of results from procedure SHIFT.

The comparison of the clean and noisy data shows that
maximum correlation appears always at the same position
except for object DREI. Object DREI finds maximum correlation
at the border of the area of interest, consisting of 21 x 21
pixels in a square around the original position. The absolute
maximum would lie outside this window. In the clean version
two adjacent positions get the same maximum value while in
the other version noise influences the correlation. Hence
the maximum is found in only one position. This is
reflected in the change of one coordinate of the control points
of DREI and explains why the error vectors are not identical
in the two versions.

8.2.4 Results with procedure THRESH

In the same way as procedure SHIFT, procedure THRESH was
applied to the two versions of image MERK with projection (8.1).

The parameters chosen for this example were distance D =
10 and factor p = 1.0 (compare chapter 6.3). Two restrictions
to the threshold bounds IPU and IPO were necessary:

(a) The lower bound IPU was fixed to 0 and
(b) "bad" grey values were not allowed by setting IPO < 255.

Tests have shown that no reasonable results can be
obtained without these two restrictions since the overlap
region between projection and image feature is so small. An
alternative has been to choose factor p so small that p*F(M)
is less than the surface of the overlap. This works for the
clean version but not with noise.
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The two conditions above seem to be reasonable because they
can be translated into conditions for preprocessing which
underlying satellite images should satisfy:

(a) The grey values of the preprocessed image should be low
for pixels which belong to the feature and high for the
rest.

(b) Pixels with grey value 255 are excluded a priori.

Figure 8.8 summarizes the results of THRESH.

Correl.
Feature x y Error vector Length__ _ _ __ _ _ _ __ _ _ x My [__ __ _ ]_ _

RECHT ( 61.500 , 61.500) (0.223 , -0.224) 0.316 98.533
DREI ( 58.667 ,183.667) (-0.361 , 0.248) 0.438 85.217
KARO (124.500 ,124.949) (0.298 , -0.062) 0.304 92.823
PARA (186.500 , 79.500) (-0.421 , 0.289) 0.510 93.439
KREIS (187.000 ,187.000 (0.261 , -0.251) 0.363 94.913

Stand. deviation (0.507 , 0.362) 0.623 92.805

N o i s e

RECHT ( 61.500 , 61.500) (0.662 , -0.178) 0.685 89.472
DREI ( 58.667 ,183.667) (-0.721 , 0.268) 0.770 43.128
KARO (124.500 ,124.949) (0.159 , -0.195) 0.252 65.279
PARA (186.500 , 79.500) (-0.842 , 0.312) 0.898 86.673
KREIS (187.000 ,187.000) ( 0.743 , -0.207) 0.771 77.387

Stand. deviation (1.059 , 0.375) 1.124 72.388

Figure 8.8: Table of results from procedure THRESH.

Binary correlation is used here for verification. 100 X is
not reached for the same reason as for SHIFT. However, better
values for the clean image show that thresholding takes care
of feature rotation and scale in the image, but verification
considers only the shift of the projection.

Results from the noisy image demonstrate the strong noise
dependency of thresholding. on the average correlation is
20 X smaller than before. Moreover object DREI could not be
accepted as recognized due to a correlation value of 43%.
Figure 8.9 explains why DREI has not been recognized autamatically.
There is a very small overlap between the imag feature and the
projected map element for the determination of the bounds.
Hence very much noise is included. The center of gravity of
all threshold pixels is therefore displaced so that verification
cannot state a similarity.

8.2.5 Results of procedures LISU and LINDET

The left hand side of the parallelogram PARA was used
to test line following. The edge operator of Roberts (chapter
5.2.4) was applied to the image (noisy and clean version: see
figure 8.10).
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These edge images were used for line detection. The starting
mask was created and the histogram provided the following
parameters of the cost-function (see chapter 6.5.3):

Clean version Noisy version

a = 256.0 a = 188.52

b = 1.0 b = - 0.7364

n = 0.78 n = 0.85

Table 8.2: Parameters of the costfunction for line following.

Starting and end point S and E are projected into the image
(S ,E ) and improved (SI,EI) by the procedure as illustrated
in'fieure 8.11:

,' q' :{,])t))uJ0 U'))0) fl'ltJO nnOdjoInr~nn] (j "f310 r)IIt "I,

:3 ,VJfnuno0 flfnl O 0n O0oOr) 3000O 'I1U 1 nO o0.lf ii I 111
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Figure 8.11: Improvement of starting and end point of the

line.

(a) (cost SI < 1,(cost EI ) < 1

(b) SI and E are contained in the starting mask

(c) Among pixels satisfying conditions (a) and (b) SI and EI
have the maximum distance to Sp and EP.
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Black pixels in figure 8.11 are pixels satisfying the first
two conditions. The arrow points to the improved extreme
points corresponding to condition 3.

Figure 8.12 shows the results of procedures LISU and
LINDET within the corresponding search area.

For verification purposes the corresponding lines in
the map and image were subdivided into 6 parts of equal length.
Subdivision points 2 and 4 are used to calculate a new
transformation of best overlay according to
chapter 6.6.1(b). All 5 subdivision points of the map are
transformed and difference vectors calculated to the 5
corresponding points of the image line. The results are shown
in figure 8.13. No errors appear in the clean version because
the line is straight. In the noisy picture some pixels do not
lie on a straight line. Starting and end points are not
included in the verification process because they are not a
result of line following.

Point differences of the linear transformation adapted to points 2 and 4

subdivisicn. Error (clean lergt- Error (noisy image) length
points image)

ax &V &_ _ _ __ _ _ _

1 (.0 , .0) .0 ( .207 , -. 207) .293

2 (.0 , .0) .0 .0 .0 ) .0

3 (.0 , .0) .0 (-.146 , .232) .275

4 (.0 , .0) .0 ( .0 .0 ) .0

5 (.0 .0) .0 (-.207 , .207) .293

Stand.dev. (.0 , .0) .0 ( .231 , .264) .352

Figure 8.13: Verification of the line in MERK.

8.2.6 Results with procedure ADAPT

Considerations of computing time caused us to use a new

approximate projection which is improved and brings the
objects nearer to the image features. This projection (8.2)
has the following parameters

T x(xy) = -0.01 * x + 1.02 * y - 0.50(
X (8.2)

T y(xy) = 1.02 * x - 1.00

and results in areas for each feature as shown in t'able 8.3.
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Figure 8.14: Adapting object KARO in the clean image.

(a) (c) (e) binary masked printout

(b) (d) Mf complemented binary
original adapted verified
projection (8.2) pattern projection
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Feature Area Area Differences in
orig. proj. position (pixels)

RECHT 36.1 40.0 0.000
DREI 20.0 23.2 2.968
KARO 48.4 41.0 1.759
PARA 74.1 83.2 2.570
KREIS 48.5. 53.9 2.998

Table 8.3: Characteristics of projection 2inpixel units.

Procedure ADAPT is demonstrated by means of object KARO
(figure 8.14). Four iterations have been computed. The
changes of the shapes are illustrated in figure 8.15. This
figure presents the surface of the feature "binadapt" before
each iteration step; the number of pixels that are added (+)
and eliminated (-) at each step; and finally the grey value
bounds and the number of pixels contained in this interval
in binadapt.

Iteration Starting + _ Grey value
Area limits: area

1 410 32 48 (0,254):334
2 394 20 17 (0,254):366

3 397 0 11 (0,254):386
4 386 0 00 (010 ):386

386

Figure 8.15: Shape changes while iterating ADAPT on
oject TKARO.

During the last iteration step the correct interval (0,0) is
found. Verification, however, is less than 100 % because of
orientation and scale differences in projection (8.2) (see
figure 8.14e,f).

A summary of results from procedure ADAPT is presented
in figure 8.16.
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C 1 e a n

Feature Position in the image Error vector Length Correl.
x y Ax Ay []

RECHT ( 61.500 , 61.500) ( 0.134 , -0.010) 0.134 100.000
DREI ( 58.667 ,183.667) (-0.133 , 0.015) 0.134 99.349
KARO (124.500 ,124.949) ( 0.006 , -0.011) 0.012 95.867
PARA (186.500 , 79.500) (-0.155 , 0.017) 0.156 98.533
KREIS (187.000 187.000) (0.149 , -0.011) 0.149 98.094

Stand. deviation ( 0.202 , 0.021) 0.203 98.369

N o i s e

RECHT ( 61.500 , 61.500) ( 0.171 , 0.044) 0.176 100.000
DREI ( 58.667 ,183.667) (-0.127 , -0.058) 0.139 83.604
KARO (124.500 ,124.949) (-0.082 , 0.032) 0.088 83.733
PARA (186.500 , 79.500) (-0.148 , -0.068) 0.163 86.561
KREIS (187.000 187.000) ( 0.186 , 0.050) 0.193 87.343

Stand. deviation (0.233 , 0.082) 0.247 88.248

Figure 8.16: Results from procedure ADAPT.

For object RECHT projection (8.2) results in an errorfree
overlap which is detected by ADAPT in the first iteration.
Noise decreases the correlation by about 10 %. The effect of
noise in the control points is very small.

8.2.7 Comparison of recognition procedures

After the determination of control points for every
object with every of the investigated methods an overdetermined
6-parameter linear transformation is computed with residuals
to compare the results. Figure 8.17 presents the results from
the clean and noisy image.

c 1 e a n n o i s e

method feature error vector length error vector length

SHIFT RECHT ( 0.450 ,-0.657) 0.796 0 0.905 ,-0.567) 1.068
DREI (-1.712 1.235) 2.111 0.117 , 1.735) 1.739
KARO ( 0.083 -0.517) 0.524 0.808 , 0.175) 0.827
PARA (-0.229 ,-0.550) 0.595 (-0.434 ,-0.074) 0.440
KREIS ( 0.833 , 0.058) 0.835 ( 1.816 , 1.340) 2.257

THRESH RECHT ( .470 -0.181) 0.504 ( 0.089 -0.275) 0.289
DREI (-0.655 , 0.344) 0.740 (-3.396 ,-0.870) 3.506
KARO ( 0.323 ,-0.294) 0.437 (-0.982 -1.008) 1.407

PARA (-0.139 ,-0.250) 0.286 (-0.706 ,-0.278) 0.759
KREIS ( 0.070 -0.757) 0.760 -0.947 , -1.723) 1.966

Figure 8.17: Overall results with synthetic image MERK (cont'd).
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ADAPT RECHT (0.470, -0.181) 0.504 (0.925 , -0.091) 0.930
DREI (0.665, -0.138) 0.679 (1.131, 0.535) 1.251
KARO (0.383, -0.223) 0.443 (0.780, -0.284) 0.830
PARA (-0.139 , -0.250) 0.286 (0.382, -1.184) 1.244
KREIS (0.562, -0.265) 0.621 (1.152, -0.452) 1.237

LINDET PUNKT2 4-0.383 , 0.789) 0.877 (-0.674, 1.019) 1.222
PUNKT4 -1.051 , 1.835) 2.115 (-0.966 , 2.0.01) 2.222

Stand.deviation (0.710, 0.738) 1.024 ( 1.322 , 1.105) 1.723

Figure 8.17: Comparison of recognition methods by error vectors.

For lines, the subdivision points 2 and 4 are used as
control points. In the clean version there are two points
with error vector lengths greater than 1: DREI with SHIFT
and point 4 with LINDET. DREI was the object from which the
projection (8.1) was more than 10 pixels apart from the image
feature. The error of the line subdivision point 4 has its
explanation in the fact that the end point EI in the image
lies on the short side of the parallelogram PARA while the
starting point was found correctly. So the line in the image
must be longer than the real projection of the map. The effect
of that is that the control points are shifted towards the
end point.

From the point of view of noise all errors of all
procedures become greater but THRESH seems to be the worst.
Errors of LINDET are of the same type as in the clean image.
Errors of ADAPT seem to be the most homogeneous (0.2 to 0.7
with clean data, 0.8 to 1.2 with noise) with little variations
while the other methods vary more in their performance.

Figure 8.18 summarizes the standard deviation of all
methods and the mean of the correlation measures used for
verification.

standard deviations meam
method noise 0x 1y p correlatior

SHIFT no 1.113 0.503 1.221 85.264 S
yes 1.113 0.333 1.162 85.252 %

THRESH no 0.507 0.362 0.623 92.805 X
yes 1.059 0.375 1.124 72.388 %

ADAPT no 0.202 0.021 0.203 98.369 %
yes 0.233 0.082 0.247 88.248 %

LINDET no 0.000 0.000 0.000 100.000 Z
yes 0.231 0.264 0.352 98.278 %

Figure 8.18: Comparison of recognition methods by statistical
measures.
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The correlation measure licorr of the line is calculated
from the error vector lengths liwiththe following formula:

licorr = 100 (i ( i)/(n *D)

where n is the number of intersection points and D is the
maximum shift lengths as assumed.

This table shows again that method THRESH is most
sensitive to noise. In general it is better than shift and
has its greatest advantage in computation speed. Speed was
the handicap of procedure ADAPT in our tests. However, the
current version of ADAPT provides plenty of possibilities
and parameters to accelerate speed in an improved version.

8.3 EXPERIENCES WITH LANDSAT IMAGE WALCH

Image WALCH was the first satellite image treated.
Basic concepts of the recognition methods were implemented
and tested and often corrected. The purpose was to obtain
an understanding of weaknesses, not, however, to compare
the methods.

8.3.1 Image WALCH and map

Figure 8.19 shows the portion of a satellite image from
Southern Germany in its 4 spectral bands MSS4, MSSS, MSS6
and MSS7.

This image was available in a NASA-format. This is
significant for the present purpose, since NASA performs a
grey value normalisation. Grey values in MSS4, MSS5 and
MSS6 range from 0 to 127, while in MSS7 it is between 0 and
63.

-The corresponding map data bank covers the area of the
image. Figure 8.20 shows a plot output of the map. Indicated
are some features which were used for recognition.

The features are of different size, texture and grey
tone. There are villages (WA-SEE-ORT, Schledorf), there is
an island, a forest (Karpfau), grassland (Jochberg, Sachen-
bach, Wasuedufer, Wasuedufer 2, Wasuedufer 3, Kochelnord)
and water bodies (Walchensee, Kochelsee, Karpfsee).
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Karp foe.

Karpfau .

Schleedorf--

Jochberg

Kon.1el aee

* Sachenbach

-Walchensee

Irisel

Wssuedufer 3

Wasuedufer Wasuedufer2

Figure 8.20: Plot of part of the digital map data bank for
the test area in Southern Germany. The indicated
features were used in the test of the, procedure.
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Table 8.4 provides a list of objects ordered acc. to
size . It could be the result of procedure OBJECTSELECTION
(chapter 2.6). The table also lists the centers of gravity
of each object which are needed during the overlap process
and the type of each region (1 = water body, 3 = villages,
4 = grassland, 5 - forest, 9 = island).

Feature Area in Center of Gravity Type
pixels x y

WALCHENSEE 3589 (1502.268,498.028) 1

KOCHELSEE 1374 (1501.242,510.522) 1

KOCHELNORD 503 (1500.632,512.897) 4

SCHLEDORF-UF 339 (1497.685,510.566) 4

KAKOPFWALD 176 (1497.627,496.215) 5

WA-SEE-ORT 146 (1496.879,498.143) 3

SACHENBACH 126 (1506.761,501.946) 4

JOCHBERG 113 (1506.301,505.659) 4

WALD-10 89 (1496.127,494.969) 5

SCHLEDORF 63 (1497.593,512.858) 3

KAKOPFFREI 32 (1498.525,496.517) 4

WA-SUEDUFER 30 (1501.248,494.392) 4

WA-SUEDUFER 2 28 (1502.809,494.141) 4

KARPFSEE 21 (1496.203,514.633) 1

INSEL 14 (1505.347,498.391) 9

WA-SUEDUFER 3 11 (1504.169,494.278) 4

KARPFAU 3 (1496.646,514.131) 5

Table 8.4 Sorted objectlist for map WALCH.

8.3.2 Projecting the map into the image

An approximate geometric relationship must be established
prior to the automated recognition process. The map data are
therefore projected into the image with an approximate a-priori
6-parameter transformation. This approximation may, for example,
derive from the satellite orbit data.

The result of the transformation is shown in figure
8.21. The transformation used the following parameters:

Tx(x,y) = 8.213448 * x - 2.60549 * y - 10685.4

T y(x,y) = -1.489149 * x -'6.120147 *y + 5423.8
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8.3.3 Results from procedure SHIFT

Procedure SHIFT was applied to 24 objects of the map.
13 could be recognized with a correlation greater than 50 .

Figure 8.22 lists the names of objects, the channels for
which maximum correlation was reached, the correlation
measures in percent and error vectors with their lengths.

Feature Error vector Lengthof Chan- Corre-
x y vector nel lation

WALCHENSEE (-0.690 , 0.161) 0.708 7 60.658
KOCHELSEE (-1.107 , -0.398) 1.177 7 73.102
KARPFSEE ( 1.682 , -0.162) 1.689 6 55.519
WA-SEE-ORT (-1.317 , 0.630) 1.460 4 55.057
SCHLEDORF (-1.328 , -0.285) 1.358 4 67.277
WA-SUEDUFER ( 0.714 , 0.425) 0.831 7 61.290
WA-SUEDUFER 2 ( 2.054 , 0.319) 2.079 5 72.195
WA-SUEDUFER 3 (-0.943 , -1.767) 2.003 5 58.777
JOCHBERG (-0.166 , 0.379) 0.414 4 79.698
KOCHELNORD ( 0.020 , 0.492) 0.492 5 60.084
SACHENBACH ( 0.572 , 0.490) 0.753 4 69.800
KARPFAU ( 0.720 , -0.258) 0.765 5 69.479
INSEL (-0.211 , -0.026) 0.213 7 60.999
Stand.deviation ( 1.207 , 0.692) 1.391

Figure 8.22: Summary of results from procedure SHIFT.

The distribution of the projected objects and the
direction in which they are shifted are shown in figure 8.23.
The control points are used for a subsequent image rectification
which is described in chapter 8.3.7.

8.3.4 Results from procedure THRESH

Thresholding itself is a very simple algorithm.
Difficulties arise for the choice of threshold bounds. How
could they be determined automatically? The only aid is the
histogram if no external information is available about grey
values. Even some rough estimations must be based on a
histogram of grey values in the area of interest.
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Vectors

*Scale 2kl

Figure 8.23: Deformation vectors as obtained from the
recognized 13 features of emthod SHIFT.

There are two possibilities to vary parameters:

(a) The selection of a.region can be varied, thus the set
of pixels which is considered for the histogram
(histogram mask).

(b) The algorithm can be varied to determine from a given
histogram the threshold bounds.

The following histogram masks were used:

HI(D): The rectangular window enclosing the map object
as projected into the image, plus a border of D
pixels width in each coordinate direction.

H2(D): The projection of the object minus a band of D
pixels width from the border.

H3(D): The projection of the object plus a band of D
pixels width from the border.
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The following grey value boundary determination
algorithms were used (IPU = lower bound, IPO = upper bound):

Gi uses the mean M and standard deviation S:

IPU = M - S , IPO = M + S,

G2 determines IPU and IPO by hand,

G3(p) equals procedure ADAHIS with parameter p (see
chapter 6.3).

The final procedure is a product of tests with image
WALCH, where these alternatives are weighted against one
another.

In the example of lake WALCHEN, we know from the map
that the water should be dark on channel 7 of the satellite
image. Using the histogram over H1(9), and the known surface
of the feature with G3(1.3), a thresholding operation
produces a new image (TBI) with pixels that are predicted
to include the feature. Many other pixels are, however, also
included (figure 8.24a). In using map-guidance the binary
image OBI (figure 8.21a)serves as a template to eliminate
the noisy pixels and to obtain a result, ABI, as shown in
figure 8.24b.
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The sequence thresholding-elimination of noisy pixels
via map-guidance was inverted in the proposed procedure
according to chapter 6.3. The noise elimination can be
performed using a distance transform or can be substituted
by the preselection of the starting mask.

Further results of different constellations for threshold
band determination are presented in figure 8.25 using 4 objects.

Object Thresh. Correl. Diff. vector

bounds to shift res.

WALCHENSEE

1: HI(10),G1 (1,26) 54.735 X (-8.6 , -1.8)
2: HI(10),G3(1.0) (0. 5) 88.282 % ( 0.5 , 0.3)
3: H3(5)*,G3(0.86) (0, 5) 86.882 % ( 3.6 , 0.2)
4: H1(9),G3(1.) (0, 4) 91.060 % ( 0.7 , 0.9)
5: H1(9),G2 (0, 8) 74.096 % (-1.9 , -1.3)

+NE* 89.385 % (-.1 -0.9)
+NE** 93.752 % ( 1.0 , 0.1)

KOCHELSEE

1: Hl(10),G1 (5,37) 21.511 ( 2.9 , -5.5)
2: H1(10),G3(l.) (1, 5) 70.507 X (-3.1 , -4.3)
3: H2(5)*,G2 (1, 5) 67.661 % ( 0.0 -0.9)
4: H3(5)*,G3(0.77) (1, 5) 80.866 % (-1.0 , -2.4)

SCHLEDORF-UF***

1: H3(5)*,GI (8,38) 37.965 %
2: H3(5)*,G3(.81) (33,45) 51.773 %

KAKOPFWALD***

1: H2(5)*,G1 (4,26) 72.004 %
2: H3(5)*,G1 (1,34) 44.982 %
3: H3(5)*,G3(0.90) (1, 4) 41.247 %

Figure 8.25: Results from procedure THRESH for 4 selected
objects.

* Results impaired by exceptional effects in determining
the histogram mask. These effects, if existing, could
be eliminated by refined methods.
Elimination of noise after thresholding (like fig. 8.24).

e Objects not recognized with SHIFT, therefore no difference
vector.
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The grey tone boundary determination algorithm depends
on the histogram masks. Gi could be combined with H2 (see
feature KAKOPFWALD, 1) but did not work well with Hi (WALCHEN-
SEE,l; KOCHELSEE, ) nor with H3 (KAKOPFWALD,2) where the
resulting threshold interval is too large. The parameter p
of G3(p) depends also on the histogram mask used. With HI, p
can be greater or equal to 1 because the mask's surface is
much greater than the surface of the projection;with H2 a
combination with G3(p) is not meaningful because the surface
reduction by H2 eliminates already most of the noise and in
this case p depends also on the shape of the objectso that no
proportional relationship can be established. Good results
were obtained from G3(p) with H3. Parameter p was chosen to
be less than 1.0 to compensate discretisation errors of the
object projection.

From all these experiences follows that the version of
THRESH in chapter 6.3 could be adequate in most cases.

8.3.5 Test and results with procedure LINDET

The objective of tests was to identify the border line
of lake WALCHEN. Border lines can be searched either on
original images or on preprocessed images. The two search
problems differ only in the choice of a different form of
the cost function. The simultaneous search on all 4 channels
of the image was found to be impracticable because of
currently very long computation times. Hence the 4 channels
have been compressed according to equation 5.25 in chapter
5.5. Parameters were calculated with the aid of feature type
lake (WALCHENSEE, KOCHELSEE). An image section with lake
WALCHEN is shown in figure 8.26.

--.=.

Figure 8.26: Portion of
compressed image (Equ.

l _ 5.25) with lake WALCHEN.

4k. .



-132-

Line following was divided into 3 segments, which are
searched independently. The following cost function was used.

c(xy) = 255 - Ig(y) - g(left(y)) 1 (8.4)

where y is the pixel on the right hand of the edge and left
(y) defines its left hand counterpart. Starting and end
points of the three segments are extremal points of the
contour WALCHENSEE as designated in figure 8.27. This
segmentation is necessary for the Euclidean distance used as
heuristic function. The union of the three seqments and the
corresponding development areas are shown in figure 8.29a.

Figure 8.2): Segments of border line of WALCHENSEE,
projection from map WALCH.

The second method works on an edge image. The operator
of Roberts was applied to the compressed image as shown in
figure 8.28.
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Figure 8.29: Border line of lake WALCHEN with development area:
(a) found in the compressed original image and(b) found in the edge image.

Although the so-called development area (compare.
chapter 6.5) in the second case (b) is greater, its completion
time was less than in the first case (a). The reason can be
the expensive and repetitive computation of edge values for
the compressed image, while for the edge image the values are
already precalculated. This allows the use of more sophisticated,
edge operators than in the first case.

One part of the line has been modified at the-left side(compare projected object in figure 8.27). The line follower

skipped the small branch of the lake because it is not evidentin the image. In general the line from the compressed image

is smoother than the line from the edge image which seems to
be more sensitive to little changes in direction.

8.3.6 Experiences with procedure ADAPT

As with procedure THRESH, also ADAPT was applied first
to object WALCHENSEE.

-a , .
,

.
,

,,
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The determination of the grey level boundary was done
in this example by method GI (see chapter 8.3.4).

A histogram of the image in figure 8.21 (OBI) will
reveal that pixels are included that should be eliminated.
On the other hand, pixels in the remainder of the image (in
the negative of OBI), are not part of the approximate map-
defined feature, but are adjacent to it and should be added.
An iterative search along the boundary of the feature will
thus permit to correct the image (OBI), using its histogram
to decide which pixels to reject and which ones to accept.
This "Cinderella-algoritlh produces the result shown in
figure 8.30a, denoted as image ABI (adapted binary image).
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After these early experiences from lakes WALCHEN and
KOCHEL we applied ADAPT to seven objects of the map. These
objects were searched on channel 7 of the satellite image
in two and in three iteration steps. Results are listed in
figure 8.32.

Differences Threshold Correlation

Feature 2. 3. boundary 2. 3.
Iteration + - Iteration

WALCHENSEE 339 409 (-3,10) ( 7,30) 95.239 94.212
KOCHELSEE 181 215 (-3,18) (12,41) 93.440 92.176
WA-SEE-ORT 52 71 (25,46) ( 6,31) 82.011 75.602
SCHLEDORF-UF 180 230 (20,44) ( 4,37) 71.565 63.777
WALD-10 65 65 (15,38) ( 3,31) 59.963 57.066
KAKOPFWALD 35 51 ( 6,36) ( 0,31) 89.668 84.651
KAKOPFFREI 46 56 (22,48) (-3,23) 56.575 52.052

Figure 8.32: Results of method ADAPT on MSS7 of image WALCH.

The threshold boundary was determined by method G1 (see
chapter 8.3.4) for adding pixels (+) working on a histogram
mask H3(0) and for determination of pixels (-) working on the
complement of H3(0). The resulting grey level intervals over-
lap in some cases very much, so that the same pixel, which
has been added in the first step, is eliminated in the second
step. Furthermore no grey level adaptation was performed from
iteration to iteration. These disadvantages led us to the
procedure formulated in chapter 6.4.

Difficulties arose for verification because with in-
creasing iterationsthe correlation of the adapted feature
with the projected decreased in all cases, although the
centers of gravity of the projection moves towards the visual-
ly perceived collection of feature pixels.With each iteration
ADAPT changes slightly the shape of the feature so that it
can become less similar to t- . shape from the map. This can
as a rule be the case at the beginning of ADAPT. It can be
compensated at higher iterations if in essence the image
features is identical in shape to the map feature. A pre-
requisite for reaching an improved similarity is the sufficient-
ly high number of ADAPT-iterations.

Figure 8.33 has been prepared to show that the deterio-
ration of the correlation measure does not mean a concurrent
motion of the image feature into an erroneous direction. It

compares ADAPT to SHIFT results/ listing the difference
vectors between corresponding centers of gravity. While cor-
relation deteriorates, difference vectors do not change signi-
ficantly.
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After 2 iterations After 3 iterations
Feature

Difference vector Length Difference vector Legth

WALCHENSEE ( 0.151 , -0.849) 0.863 ( 0.391 , -0.713) 0.813
KOCHELSEE (-0.278 , -1.004) 1.042 (-0.585 , -1.108) 1.253
WA-SEE-ORT (-0.844 , -0.699) 1.096 (-0.883 , -0.880) 1.247
SCHLEDORF-UF ( 1.518 , 1.824) 2.374 ( 1.706 , 3.149) 3.582
WALD-10 (-1.606 , -0.900) 1.841 (-1.695 , -0.184) 1.705
KAKOPFWALD (-1.404 , 0.425) 1.467 (-1.327 , 0.461) 1.404
KAKOPFFREI (-1.725 , -0.355) 1.761 (-1.841 , -0.423) 1.889

Figure 8.33: Differences between results of SHIFT and ADAPT
with 2 and 3 iterations.

For objects SCHLEDORF-UF and WALD-10 of type grassland the
automatic grey level determination found the wrong intervals.
Objects KOCHELSEE and WA-SEE-ORT deteriorate little while objects
WALCHENSEE, WALD-10 and KAKOPFWALD show decreasing distances
to the estimated centers of gravity from procedure SHIFT. The
problem of an effective verification could only be resolved
by allowing a maximum iteration count much higher than in the
present case. Computing time considerations prevented us from
more extensive tests.

8.3.7 Rectification of image WALCH

Image WALCH was rectified using 13 control points
that were defined automatically with method SHIFT.

The.13 features served to compute centers of gravity.
This led then to a set of control points for a rectification.
Figures 8.34a,b present the result of the rectification.
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(a) (b)

Figure 8.34: LANDSAT-scene from Southern Germany, with raw
version in (a) and rectified image in (b),
using 13 features.

8.4 RESULTS FROM LANDSAT IMAGE GRAZ
Whereas image WALCE was used to study feature recognition

methods and their suitability in connection with automatic
map-image registration, image GRAZ had the purpose to test
automation and performance of the overall concept.

8.4.1 Image GRAZ and map

The original satellite image channels 4, 5, 6 and 7 of
the area of interest chosen for this testereshown in figure
5.15(a)-vd). It is an industrial region with the city of GRAZ,
and with river MUR from left top to right bottom. Two high-
ways are marked linear features. A compressed image especially
preprocessed for feature type water (river MUR, see figure
5.18) was used for line following. In the same way the four
original image channels are compressed for feature types
buildings (3), grassland (4) and forests (5). For the high-
ways a ratio image of channels 7 and 4 was used. Figure 8.35
shows a printout of the area of interst.
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Therefore the map contains political boundaries and other
features that can be predicted not to be identifiable from
a LANDBAT image

A list of areal features which have been used for recogni-
tion is given in f4.g. 8.36. This list is sorted automatically
according to tifra object size of the projection in the image
and containes further a point of the feature (center of
gravity.) in map coordinates and following types: 3 for
buildings, 4 for grassland and 5 for forests.
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Number Center of gravity

Feature of Type in map coordinates
pixel

WALTENDORF 3118 3 (225.511 , 2046.383)
KAISERWALD-S 3114 5 (218.680 , 2016.149)
SCHOTTERGRUB 1712 4 (219.796 , 2031.103)
EGGENBERG 1429 3 (214.445 , 2049.690)
KAISERWALD-N 1143 5 (213.668 , 2021.387)
ROSENBERG 825 5 (220.635 , 2053.956)
KOLLISCH 800 5 (231.189 , 2012.443)
MURFELDI 564 4 (223.306 , 2039.623)
MESSENDORF 538 4 (226.511 , 2041.478)
GEIDORF 506 3 (221.888 , 2051.610)
WUNDSCHUH 337 5 (224.708 , 2019.183)
MURFELD2 290 4 (223.465 , 2037.649)
FORST 258 5 (219.416 , 2029.027)
GREITH 204 4 (230.174 , 2011.791)
PUCHWERK 89 3 (226.224 , 2036.672)
SCHLOSSBERG 48 5 (220.120 , 2049.480)
FLIEGERHORST 34 3 (219.906 , 2029.259)
THALERHOF 19 3 (221.295 , 2031.384)

Figure 8.36: Sorted object list for image and map GRAZ.

8.4.2 Approximate projection from the map to the image.

The projection for image WALCH wasapproximated manually
rather than with. satellite orbit data; a set of control
points was defined by hand and a transformation was calculated.
For image GRAZ the approximate transformation function was
calculated totally from informations delivered on the CCT
magnetic tape header of the satellite imAge. The calculation
was based on the satellite's position (47 17') and attitude
and some specific properties of the LANDSAT-sensor according
to descriptions of ANUTA (1973) and MALILA et al. (1973). The
resulting transformation had the following parameters:

T x(x,y) = 8.5256 * x - 2.5192 * y + 3429.44X (8.5)
T y(x,y) =-1.4883 * x - 6.2442 * y + 13177.08

Visual inspection of some projected objects verified that the
accuracy was within the expected maximum allowance of about 11
pixels.

8.4.3 Results with procedure SHIFT

Procedure SHIFT was applied to the first 13 objects of
the list (figure 8.36) sorted by decreasing object sizes.
The correlation measure was calculated between the binary
matrix representing the object and a compressed image which
was preprocessed according to the feature type.
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The maximum shift along the coordinate axis was chosen as 11.
In accordance with the papers mentioned above to calculate
the transformation parameters the error of such a transfor-
mation can amount to about 11 pixels or less.

Figure 8.37 lists the results. They are sorted by
decreasing correlation values so that the best fitting of
an object with the image stands on the top (FORST). The
resulting relative shift vector to attain the maximum
correlation from the start projection is used to calculate
control points for the objects with a correlation greater
than 50 Z.

Feature Correlation Optimum shift
1%] (cl.,scan lines)

FORST 68.667 (- 5 , +1)
KAISERWALD-S 66.228 (-11 , -1)
WUNDSCHUH 64.603 (- 8 +1)
KAISERWALD-N 60.159 (- 7 +2)

KOLLISCH 36.379 (- 7 , -1)
MURFELD2 34.459 (- 3 , +3)
SCHOTTERGRUB 33.834 (- 6 , +2)
MESSENDORF 30.945 (-10 , +2)
EGGEMBERG 25.285 (- 1. +5)
GEIDORF 17.403 (- 9 * +3)WALTENDORF 15.957 (-11 , +2)
ROSENBERG 15.327 (- 1 , +2)
MURFELDI 9.335 (+ 3 , +4)

Figure 8.37: Results of procedure SHIFT for GRAZ.

Only four objects fulfil this verification condition: FORST,
KAISERWALD-S, WUNDSCHUH and KAISERWALD-N. These are all of
type forest (5). A subsequent optical inspection of the
image confirmed the following experience:

Objects can be automatically recognized on digital
satellite images if the object can be clearly distinguished
by a human interpreter.

This experiences is obvious of course and is reflected
in publications on pattern recognition. It must be borne in
mind in the present purpose.

An important reason for the small correlation values
can be found in the map data bank. WALTENDORF for example is
a political district, but was erroneously coded as a "built-up-
area"; it could never be recognized in a satellite image.
KOLLISCH and ROSENBERG have changed their shape because the
map has not been revised to reflect recent urban growth.
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We find thus that digitization of current topographic maps
can lead to an inappropriate data bank for automatic feature
recognition. It needs to be complemented by human intelligence
to flag features that can predictably not be recognized.

For comparison reasons the four recognized objects are
used to compute a new 6-parameter transformation by least
squares. Figure 8.38 lists the resulting residuals and the
corresponding standard deviations.

Feature Error vector Length Correl.

KAISERWALD-N (-0.362 , -0.711) 0.798 60.159 %

KAISERWALD-S ( 0.466 , 0.915) 1.027 66.228 %

WUNDSCHUH (-0.329 , -0.645) 0.724 64.603 %

FORST ( 0.225 , 0.441) 0.495 68.667 X

Stand.Deviation ( 0.712 , 1.398) 1.569 64.914 %

Figure 8.38: Residuals of'the four objects recognized by
SHIFT.

8.4.4 Results with procedure THRESH

Several parameters and configurations could be determined
in project WALCH. From the experiment with lake WALCHEN, where
we eliminated pixels of the pattern after the threshold
operation according to their distance to the map projection,
we learned to restrict the threshold operation to a starting
mask. This starting mask has an equivalent effect of not
taking into account pixels far away from the projected object.
By this change the philosophy of the grey bound determination
must be adapted.

The question arises what factor p should be used (line 6 of
procedure THRESH, figure 6.3a). Since the resulting pattern
should have at least as many pixels as the projection, the
factor must be at least 1.0. For the upper bound we empirically
chose 1.5. This interval [1.0, 1.5] had to be tested.

Figure 8.39 lists the resulting correlation values for
p values from 1.0 to 1.5 with step 0.05 and for eight objects.
These objects have been chosen according to previous experiences
(forests, optically distinguishable objects). Maximum correlation
is achieved for different p values, but correlation values vary
very little so that the objects recognized at the maximum are
also recognized for every p in the chosen range. In the same
way the corresponding control point differences rewkn less than
1 pixel. Therefore the value p - 1.10 was selected to be a
good compromise for the four recognized objects (p = 1.10
minimizes correlation differences with least squares).
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The centers of gravity of the four recognized objects
are then used to calculate a 6-parameter transformation.
Results are shown in figure 8.40. No explanation could be
found for the fact that the first component (=position within
a scan line)of the error vector is greater than 1 pixel while
the second component is always smaller than 1 pixel.

Feature Error vector Length Correl.

KAISERWALD-N (-1.949 , -0.086) 1.951 57.155 X
KAISERWALD-S ( 2.508 , 0.111) 2.510 78.915 %

WUNDSCHUH (-1.768 , -0.078) 1.770 68.423 x

FORST ( 1.209 , 0.054) 1.211 65.874 %

Stand..Deviation ( 3.831 , 0.170) 3.835 67.592 %

Figure 8.40: 6-parameter transformation with control points
from procedure THRESH.

8.4.5 Experiences of tests with procedures LISU and LINDET

Two dominant linear features appear in the area of
interest:

- river MUR and
- two intersecting highways (AUTOBAHN)

Figure 8.41 shows for example the "mapline" (see figure 6.6)
of the river MUR and the corresponding starting mask.

Linefollowing worked for river MUR on the complementary
image of figure 5.18. This makes sure that pixels on the
river get high values. The following cost functions are results
of a histogram over the starting masks:

cg(g) = (25.08 - 0.09796 * g)2.21 for MURand 1 4(8.6)cg(g) = (48.2977 - 0.1886 *g) 1 .9 4 for AUTOBAHN

With these parameters procedure LISU was applied to the
processed images. The search for the highways was split into
4 separate searches in a way that the end point was always the
intersection.After the searches the 4 parts of AUTOBAHN ("bin-
line") have been joined together for illustration purposes
(figuri 8.42). The development area is shown in figure 8.43.
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Figure 8.41: (a) Mapline MUR and (b) corresponding starting
mask.

The performance of procedure LISU for the two feature
types can be seen in Table 8.5

Length Surface of Computing

Feature of development time
binline area

MUR 282 pixel 1994 278.9 sec.

AUTOBAHN 480 pixel 1818 71.9 sec

Table 8.5 : Performance of procedure LISU with two different
features.
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(a) (b)
Figure 8.42: Resulting binary matrices of (a) river MUR and

(b) highways AUTOBAHN.

i...

(a) (b)

Figure 8.43: Development areas of (a) river MTJR and (b) high-
ways AUTOBAHN.
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The computing time for AUTOBAHN is the time-sum for the
four segments. Computing time in LISU is not proportional to
the length of the line, it grows with a high order dependency
because set S of continuation candidate pixels is growing
with increasing line length and must be inspected completely
for every step towards the goal.

For optical verification the resulting binary matrices
have been printed out together with the compressed image of
GRAZ (f'igure 8.44).

ie

(a) (b)

Figure 8.44: Optical verification of procedure LINDET, for
MUR (a) and for AUTOBAHN (b) .
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Computational verificatibn by subdividing both "mapline"
and "binline" into equal length segments for which a 6-para-
meter transformation is computed shows that the position of
the starting and end point has great importance for automatic
verification measures. Figure 8.45 lists the result (error
vectors and lengths) for a segment of AUTOBAHN and for MUR
with 5 segments each. Starting and end points have been
eliminated according to experiences from the synthetic image.

Feature Error vector Length

( 1.879 , -0.271) 1.898

MUR ( 0.534 -0.883) 1.032
( 0.390 , 0.095) 0.401
(-2.205 0.852) 2.364

(-0.516 , -0.046) 0.519
AUTOBAHN (-2.395 , 1.062) 2.620

( 0.472 0.071) 0.477
( 1.842 , -0.879) 2.041

Stand.Deviation ( 1.921 0 0.836) 2.095

Figure 8.45: Verification of linear features by
segmenting.

8.4.6 Some results with procedure ADAPT

With procedure SHIFT and THRESH only 4 objects could be
recognized supporting a starting deviation of the first
projection of about 11 pixels. This estimated deviation from
the real position of the feature becomes better if the
results of procedures SHIFT and THRESH are used to calculate
the transformation. Control points of LINDET have not been
used because it could not be measured how good the match of
corresponding points has been.

The resulting transformation has the following form:

T x (x,y) = 8.72 * x - 2.08 * y + 2492.32 (8.7)

T y(x,y) = -1.57 * x - 6.26 * y + 13227.4

From the residuals of the least squares solution dis-
crepancies of about 4 to 6 pixels have been found.
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Another factor that leads to increases of computing time of
ADAPT was the surface of the feature. So 5 objects smaller
than for procedures SHIFT and THRESH were used: WUNDSCHUH,
GREITH, FLIEGERHORST, PUCHWERK and THALERHOF.

The version of ADAPT as described in chapter 6.4 has
been applied to these 5 objects. Figure 8.46 lists the pixel
changes (added +, eliminated -) for each iteration:

WJNDSCHUH GREITH FLIEGERHORST PUCHWERK THALERHOF

Iteration + - + - + - + - + -

1 57 21 33 20 11 6 39 0 15 0

2 35 27 19 23 10 2 40 0 14 0

3 23 29 11 27 12 1 42 13 15 0

4 10 32 2 31 15 0 43 7 17 0

5 4 44 - - - 46 7 - -

6 3 38 - - 47 12 - -

Correl.[%] 72.031 71.183 62.655 49.337 46.852

Figure 8.46: Adapting 5 objects to the satellite image.

The last line shows that the first 3 objects have been
recognized successfully. THALERHOF was t~o small to allow a
correct grey value determination by the automatic routine.
The range was therefore toolarge and pixels had not been
eliminated during ADAPT. A similar effect accured for PUCH-
WERK. A reason why FLIEGERHORST could be verified although
it is smaller than PUCHWERK was found in the bordering forest.
It gives a good contrast to the feature so that the automatic
grey value determination delivered a correct interval.

With three control points from ADAPT, no overdetermination
was given for a 6-parameter transformation for ADAPT and there-
fore no residuals and standard deviation could be calculated.

8.4.7 Rectification of image GRAZ

With the aid of the recognised control points
procedure RECTIFY was applied to the four channels of the
original satellite image. Discrepancies between control points
of method SHIFT and method THRESH have been eliminated by
using the result with the better verification measure. Figure
8.47 can be regarded as the final result of the automatic
registration process on GRAZ.
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Figure 8.47: Rectified satellite image of GRAZ.
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9. CONCLUSIONS AND OUTLOOK

This report describes tests which have been performed to
verify a general concept for automatic registration of a
digital map with a satellite image. Programs and methods
have been developed for this purpose. The versions of algo-
rithms as described .here are products of a development process
and are not operational. They only demonstrate the principle
of our concept and the fact that it works under certain con-
straints.

Future research should be concentrated on optimization
of the general performance of each of the proposed procedures
and the development of an appropriate processing system. New
procedures can then be included in the modular concept.

From the experiences, particularly with image GRAZ, the
following suggestions can be derived regarding the required pro-
cessing system.

A processing syetem for automated feature recognition:

A. processing system is required that implements procedure
REGISTER in more than one step. Typically an initial step
should be based on satellite orbit data and large, distinct
map objects, using a simple and fast recognition method. This
result in a few control points which can be used, together
with flight data, to compute a better approximation for the pro-
jection function. One can then more efficiently employ morecomplex methods and use smaller and therefore also more features.

The processing system must implement a carefully designed
procedure OBJECTSELECTION that incorporates probabilities of
being able to recognize a feature. Political districts are of
course inappropriate for the purpose. A learning capability
should be included. Sorting criteria should be type of fea-
ture, size, contrast with surroundings, predictability of its
appearance in the image, scores from past uses.

Pre- and postprocessing functions:

Preprocessing must be more adapted to the. used recognition
procedures and object types. Texture classification should be
added. Tests should be done to study the effect of some scale
reducing preprocessing (parsing). Thresholding depends very
much on preprocessing. Therefore typical features should be
associated with characteristic preprocessing. We did test
some postprocessing after thresholding (image WALCH, object
WALCHENSEE) by a distance transform of the intersection of the
projection and threshold masks to eliminate obvious noise.

Post-processing after initial pixel-selection is thus of
particular interest in THRESH.
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Reprogramming of more operational versions of recognition
techniques:

It is in the nature of research and development that
computer programs are general, flexible and slow. Numerous
ideas exist and could now be implemented to considerably
improve the throughput times for all investigated algorithms.
The improvements can be in the software, using appropriate
computing strategies (compare brute-force similarity detec-
tion via correlation factozoand a sequential similarity
detection as proposed by BARNEA and SILVERMAN, 1972). They
can be in hardware, using e.g. pipeline and/or array pro-
cessing equipment.

To give just one example, one can consider line-fol-
lowing software where there is considerable room for
improvements, limiting set S. Even a small change such as
eliminating points from S based on time when they were
accepted in S can be of great value. This would lead to an
algorithm similar to that of MONTANARI (see VANDERBRUG,
1973) where backtracking is limited to the last three
levels.

Verification:

Verification is very rudimentary at the moment. Rotation
and scale should be incorporated in the verification process
to yield better discrimination measures for similarity of
binary matrices. One possibility can be to shift the cen-
ters of gravity to be on the same place and then to correlate
the two shapes.

If verification improves, then more than a single con-
trol point can be extracted from a single object.

In spite of the fact that software is thus far from
optimized we can conclude from the experiences that ARSIM is
a valid concept for the computer-supported registration of
mapsand images. Limitations of the success are caused by the
limitation of experiences and the map data bank. We feel
that the proposed approach to the problem is flexible, modu-
lar and broad so that registration can be done in the optimum
way. The problem is then to define this optimum. This, how-
ever, is a question of experimentation and learning.

Recently it has become evident, that the combined use of
images and maps is a necessity to study complex environmental
and other questions. The ARSIM-concept may thus be of interest
to a broad range of applicatiorn,even where control-point de-
finition is at first sight not a problem of automation. Ultima-
tely it will be of great interest to g-uide the image analysis
using map information. The inherent differences between maps
and images can then be handled through the logic that is
implemented in ARSIM.
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